Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(6): F894-F916, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634137

RESUMO

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/psicologia , Insuficiência Renal Crônica/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Humanos , Camundongos , Peixe-Zebra , Cognição , Ratos , Rim/fisiopatologia , Rim/metabolismo
2.
Pflugers Arch ; 476(4): 423-425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460007

Assuntos
Prótons
3.
Front Immunol ; 15: 1330209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404579

RESUMO

Introduction: Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods: Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results: We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in ß-diversity and relative abundance at the genus level. Discussion: To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Camundongos , Humanos , Animais , Pré-Escolar , Idoso , Linfócitos T CD8-Positivos , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Imunidade Adaptativa , Inflamação , Imunoglobulina A
4.
J Periodontal Res ; 58(5): 1006-1019, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482954

RESUMO

OBJECTIVE: To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND: This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS: Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS: The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION: Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.


Assuntos
Bifidobacterium animalis , Fígado Gorduroso , Resistência à Insulina , Periodontite , Probióticos , Ratos , Animais , Bifidobacterium animalis/fisiologia , Probióticos/uso terapêutico , Periodontite/prevenção & controle , Mucosa Intestinal
5.
J Periodontol ; 94(11): 1363-1375, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37057371

RESUMO

BACKGROUND: This study evaluated the systemic (intestine and adipose tissue) and local (periodontal tissues) impact of probiotic therapy in rats with metabolic syndrome (MS) associated or not with periodontitis (PE). METHODS: Forty-eight rats received a high-fat diet for induction of MS for 16 weeks. They were subdivided into groups with (+) and without (-) PE, receiving (*) or not (**) receiving probiotics (PROB): MS (-**), MSP (-*), MSPE (+**), and MSPEP (+*). PROB administration (Bifidobacterium animalis subsp. lactis HN019) started on the 8th week of the study and PE was induced on the 14th week by placing ligature on the animals' lower first molars. Euthanasia occurred in the 16th week. Biomolecular, immunoenzymatic assays, and histomorphometric analyses were performed. The data obtained were statistically analyzed (ANOVA, Tukey, p < 0.05). RESULTS: The MSPEP group exhibited reduced alveolar bone loss when compared with the MSPE group, as well as lower levels of hepatic steatosis and proteinuria (p < 0.05). In the intestinal environment, the MSPE group exhibited significantly lower villus height and crypt depth, as well as a greater increase in Bacillota when compared with the MSPEP group (p < 0.05). The MSPEP group showed lower adipokine gene expression (LEPR, NAMPT, and FABP4) in adipose tissue than the MSPE group (p < 0.05). CONCLUSION: The probiotic B. lactis HN019 reduced the severity of experimental periodontitis and modulated the expression of lipogenic genes and intestinal morphological and microbiological parameters in rats with MS.


Assuntos
Bifidobacterium animalis , Síndrome Metabólica , Periodontite , Probióticos , Ratos , Animais , Síndrome Metabólica/complicações , Periodontite/terapia , Periodontite/metabolismo , Intestinos/microbiologia , Probióticos/uso terapêutico , Probióticos/farmacologia
6.
mBio ; 13(6): e0131122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36383021

RESUMO

Multiple vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been evaluated in clinical trials. However, trials addressing the immune response in the pediatric population are scarce. The inactivated vaccine CoronaVac has been shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. Here, we report interim safety and immunogenicity results of a phase 3 clinical trial for CoronaVac in healthy children and adolescents in Chile. Participants 3 to 17 years old received two doses of CoronaVac in a 4-week interval until 31 December 2021. Local and systemic adverse reactions were registered for volunteers who received one or two doses of CoronaVac. Whole-blood samples were collected from a subgroup of 148 participants for humoral and cellular immunity analyses. The main adverse reaction reported after the first and second doses was pain at the injection site. Four weeks after the second dose, an increase in neutralizing antibody titer was observed in subjects relative to their baseline visit. Similar results were found for activation of specific CD4+ T cells. Neutralizing antibodies were identified against the Delta and Omicron variants. However, these titers were lower than those for the D614G strain. Importantly, comparable CD4+ T cell responses were detected against these variants of concern. Therefore, CoronaVac is safe and immunogenic in subjects 3 to 17 years old, inducing neutralizing antibody secretion and activating CD4+ T cells against SARS-CoV-2 and its variants. (This study has been registered at ClinicalTrials.gov under no. NCT04992260.) IMPORTANCE This work evaluated the immune response induced by two doses of CoronaVac separated by 4 weeks in healthy children and adolescents in Chile. To date, few studies have described the effects of CoronaVac in the pediatric population. Therefore, it is essential to generate knowledge regarding the protection of vaccines in this population. Along these lines, we reported the anti-S humoral response and cellular immune response to several SARS-CoV-2 proteins that have been published and recently studied. Here, we show that a vaccination schedule consisting of two doses separated by 4 weeks induces the secretion of neutralizing antibodies against SARS-CoV-2. Furthermore, CoronaVac induces the activation of CD4+ T cells upon stimulation with peptides from the proteome of SARS-CoV-2. These results indicate that, even though the neutralizing antibody response induced by vaccination decreases against the Delta and Omicron variants, the cellular response against these variants is comparable to the response against the ancestral strain D614G, even being significantly higher against Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Criança , Pré-Escolar , Anticorpos Neutralizantes , Vacinas de Produtos Inativados , Anticorpos Antivirais
7.
Front Cell Infect Microbiol ; 12: 949469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225231

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.


Assuntos
Infecções Pneumocócicas , Idoso , Criança , Humanos , Imunização , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Proteínas Recombinantes , Sorogrupo , Streptococcus pneumoniae , Vacinas Conjugadas
8.
Nat Immunol ; 23(7): 991-993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697839
9.
Am J Physiol Cell Physiol ; 323(2): C400-C414, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759438

RESUMO

Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequela of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability, and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.


Assuntos
Neoplasias , Prótons , Fibrose , Humanos , Concentração de Íons de Hidrogênio , Inflamação , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
J Clin Periodontol ; 49(8): 828-839, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35634695

RESUMO

AIM: This randomized placebo-controlled clinical trial evaluated the effects of multispecies probiotic containing Lactobacillus rhamnosus HN001™, Lactobacillus paracasei Lpc-37®, and Bifidobacterium animalis subsp lactis HN019™ as an adjunct to mechanical debridement (MD) on changes in bleeding on probing (BOP) in edentulous patients with peri-implant mucositis (PiM). MATERIALS AND METHODS: Patients were randomly assigned to test (probiotic) or control (placebo) groups. All sites with PiM received MD and topical gel application (probiotic or placebo) at baseline and 12 weeks. After initial MD, patients consumed probiotic or placebo capsules twice a day for 12 weeks. Clinical (modified sulcus bleeding index [mSBI]; modified plaque index [mPI]; probing depth [PD]; and BOP) and immunological parameters were collected at baseline and after 12 and 24 weeks. Data were statistically analysed (p < .05). RESULTS: Thirty-six patients with PiM were recruited. The test group presented higher prevalence (p < .05) of cases of restored peri-implant health at 24 weeks than did the control group (72.2% and 33.3%, respectively). No significant difference was observed between test (n = 18) and control (n = 18) groups for mPI and PD. mSBI %-score 0 was higher in the test group than in the control group at 24 weeks (p < .05). When compared with baseline, both groups presented reduced BOP at 12 and 24 weeks (p < .05). BOP was lower in the test group than in the control group at 12 (mean difference = -14.54%; 95% confidence interval [CI] = -28.87 to 0.22; p = .0163) and 24 (mean difference = -12.56%; 95% CI = -26.51 to 1.37; p = .0090) weeks. At 24 weeks, only the test group presented lower levels of interleukin (IL)-1ß, IL-6, IL-8, and tumour necrosis factor (TNF)-α than those at baseline (p < .05). CONCLUSIONS: The multispecies probiotic (administered locally and systemically) containing L. rhamnosus HN001™, L. paracasei Lpc-37®, and B. lactis HN019™ as an adjunct to repeated MD promotes additional clinical and immunological benefits in the treatment of PiM in edentulous patients (ClinicalTrials.gov NCT04187222).


Assuntos
Implantes Dentários , Mucosite , Peri-Implantite , Probióticos , Implantes Dentários/efeitos adversos , Índice de Placa Dentária , Humanos , Mucosite/etiologia , Mucosite/terapia , Peri-Implantite/terapia , Probióticos/uso terapêutico
11.
Pflugers Arch ; 474(5): 487-504, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247105

RESUMO

The detection of H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-specialized pH-sensing mechanisms. The proton-activated G protein-coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 (Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal adaption to changes in acid-base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these receptors in physiological processes and will briefly discuss some implications for disease processes.


Assuntos
Células Endoteliais , Prótons , Células Endoteliais/metabolismo , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
12.
Probiotics Antimicrob Proteins ; 14(2): 313-325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35260963

RESUMO

This study aimed to assess the effects of the probiotic (PROB) Bifidobacterium animalis subsp. lactis HN019 in two different delivery vehicles in experimental periodontitis (EP), including the gene expression for IL-10, IFN-γ, and FOXP3. In total, 32 rats were assigned into groups (n=8): C (control), EP, EP-PROB/Water, and EP-PROB/Milk. The probiotic was administered for 4 weeks, from baseline to euthanasia. Periodontitis was induced by ligatures 14 days after baseline. Data were statistically analyzed (p<0.05). Both probiotic groups presented decreased alveolar bone loss and increased interproximal attachment level than group EP. Also, these parameters were significantly improved in the Milk group when compared with the Water group. EP-PROB/Milk showed higher gene expression for IL-10 and lower for FOXP3 in relation to EP-PROB/Water and EP groups. The use of milk was able to potentiate the protective effects of B. lactis HN019 in rats under EP.


Assuntos
Bifidobacterium animalis , Periodontite , Probióticos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Periodontite/terapia , Probióticos/farmacologia , Ratos , Água/metabolismo
13.
J Periodontol ; 93(2): e1-e12, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34374081

RESUMO

BACKGROUND: This study evaluated the effects of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) in the development of periodontitis (PE), associated or not with metabolic syndrome, (MS) in rats. METHODS: Ninety-six rats were grouped according to a food protocol: high-fat diet for induction of MS or standard diet for the control groups (C). They were subdivided into groups with (+) and without (-) PE, receiving (*) or not (**) probiotic (PROB): C-**, CP-*, PE+**, PEP+*, MS- MSP-*, MSPE+**, and MSPEP+*. PROB administration started on the eighth week of the study and PE was induced on the 14th week by placing ligature on the animals' lower first molars. Euthanasia occurred in the 16th week. Biomolecular analyzes, immunoenzymatic assays, and microtomographic analyses were performed. The data obtained were analyzed statistically (P < 0.05). RESULTS: The PEP and MSPEP groups showed lower levels of alveolar bone loss when compared with the PE and MSPE groups, respectively (P < 0.05). The immunoenzymatic analysis showed higher levels of interleukin (IL)-1ß and a higher receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio in the MSPE group when compared with the MSPEP group (P < 0.05). The PEP group showed lower levels of tumor necrosis factor (TNF)-α and IL-6 when compared with the PE group. The use of PROB attenuated dyslipidemia parameters in animals with MS, with or without PE. CONCLUSION: B. lactis HN019 reduced more significantly the severity of PE in rats with MS, modulating both systemic metabolic and immunoinflammatory parameters in periodontal tissues.


Assuntos
Perda do Osso Alveolar , Bifidobacterium animalis , Síndrome Metabólica , Periodontite , Probióticos , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/prevenção & controle , Animais , Bifidobacterium animalis/metabolismo , Síndrome Metabólica/complicações , Osteoprotegerina/análise , Periodontite/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Ligante RANK/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
14.
Inflamm Bowel Dis ; 28(1): 109-125, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34320209

RESUMO

BACKGROUND: Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of pH-sensing receptors compared with non-IBD controls. Acidification leads to angiogenesis and extracellular matrix remodeling. We aimed to determine the expression of pH-sensing G protein-coupled receptor 4 (GPR4) in fibrotic lesions in Crohn's disease (CD) patients. We further evaluated the effect of deficiency in Gpr4 or its pharmacologic inhibition. METHODS: Paired samples from fibrotic and nonfibrotic terminal ileum were obtained from CD patients undergoing ileocaecal resection. The effects of Gpr4 deficiency were assessed in the spontaneous Il-10-/- and the chronic dextran sodium sulfate (DSS) murine colitis model. The effects of Gpr4 deficiency and a GPR4 antagonist (39c) were assessed in the heterotopic intestinal transplantation model. RESULTS: In human terminal ileum, increased expression of fibrosis markers was accompanied by an increase in GPR4 expression. A positive correlation between the expression of procollagens and GPR4 was observed. In murine disease models, Gpr4 deficiency was associated with a decrease in angiogenesis and fibrogenesis evidenced by decreased vessel length and expression of Edn, Vegfα, and procollagens. The heterotopic animal model for intestinal fibrosis, transplanted with terminal ileum from Gpr4-/- mice, revealed a decrease in mRNA expression of fibrosis markers and a decrease in collagen content and layer thickness compared with grafts from wild type mice. The GPR4 antagonist decreased collagen deposition. The GPR4 expression was also observed in human and murine intestinal fibroblasts. The GPR4 inhibition reduced markers of fibroblast activation stimulated by low pH, notably Acta2 and cTgf. CONCLUSIONS: Expression of GPR4 positively correlates with the expression of profibrotic genes and collagen. Deficiency of Gpr4 is associated with a decrease in angiogenesis and fibrogenesis. The GPR4 antagonist decreases collagen deposition. Targeting GPR4 with specific inhibitors may constitute a new treatment option for IBD-associated fibrosis.


Assuntos
Colite , Animais , Colite/patologia , Fibrose , Humanos , Concentração de Íons de Hidrogênio , Intestinos/patologia , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Nephrol Dial Transplant ; 37(Suppl 2): ii4-ii12, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718761

RESUMO

Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10-30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.


Assuntos
Acidose , Disfunção Cognitiva , Transtornos Motores , Insuficiência Renal Crônica , Acidose/etiologia , Bicarbonatos , Disfunção Cognitiva/etiologia , Humanos , Transtornos Motores/complicações
16.
Front Pharmacol ; 12: 713595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630089

RESUMO

Periodontitis is an inflammatory disease induced by a dysbiotic oral microbiome. Probiotics of the genus Bifidobacterium may restore the symbiotic microbiome and modulate the immune response, leading to periodontitis control. We evaluated the effect of two strains of Bifidobacterium able to inhibit Porphyromonas gingivalis interaction with host cells and biofilm formation, but with distinct immunomodulatory properties, in a mice periodontitis model. Experimental periodontitis (P+) was induced in C57Bl/6 mice by a microbial consortium of human oral organisms. B. bifidum 1622A [B+ (1622)] and B. breve 1101A [B+ (1101)] were orally inoculated for 45 days. Alveolar bone loss and inflammatory response in gingival tissues were determined. The microbial consortium induced alveolar bone loss in positive control (P + B-), as demonstrated by microtomography analysis, although P. gingivalis was undetected in oral biofilms at the end of the experimental period. TNF-α and IL-10 serum levels, and Treg and Th17 populations in gingiva of SHAM and P + B- groups did not differ. B. bifidum 1622A, but not B. breve 1101A, controlled bone destruction in P+ mice. B. breve 1101A upregulated transcription of Il-1ß, Tnf-α, Tlr2, Tlr4, and Nlrp3 in P-B+(1101), which was attenuated by the microbial consortium [P + B+(1101)]. All treatments downregulated transcription of Il-17, although treatment with B. breve 1101A did not yield such low levels of transcripts as seen for the other groups. B. breve 1101A increased Th17 population in gingival tissues [P-B+ (1101) and P + B+ (1101)] compared to SHAM and P + B-. Administration of both bifidobacteria resulted in serum IL-10 decreased levels. Our data indicated that the beneficial effect of Bifidobacterium is not a common trait of this genus, since B. breve 1101A induced an inflammatory profile in gingival tissues and did not prevent alveolar bone loss. However, the properties of B. bifidum 1622A suggest its potential to control periodontitis.

17.
Nephrol Dial Transplant ; 36(10): 1806-1820, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240183

RESUMO

BACKGROUND: Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with a higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy are associated with altered expression of proteins involved in renal acid-base metabolism. METHODS: We retrospectively collected kidney biopsies from 22 patients. Of these patients, nine had no acidosis, nine had metabolic acidosis [plasma bicarbonate (HCO3- <22 mmol/L) and four had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. RESULTS: We found that the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. These genes are mostly involved in proximal tubule (PT) amino acid and lipid metabolism and energy homoeostasis. Three transcripts were fully recovered by alkali therapy: the Kir4.2 potassium channel, an important regulator of PT HCO3- metabolism and transport, acyl-CoA dehydrogenase short/branched chain and serine hydroxymethyltransferase 1, genes involved in beta oxidation and methionine metabolism. Immunohistochemistry showed reduced staining for the PT NBCe1 HCO3- transporter in kidneys from acidotic patients who recovered with alkali therapy. In addition, the HCO3- exchanger pendrin was affected by acidosis and alkali therapy. CONCLUSIONS: Metabolic acidosis in kidney transplant recipients is associated with alterations in the renal transcriptome that are partly restored by alkali therapy. Acid-base transport proteins mostly from PT were also affected by acidosis and alkali therapy, suggesting that the downregulation of critical players contributes to metabolic acidosis in these patients.


Assuntos
Acidose , Transplante de Rim , Equilíbrio Ácido-Base , Acidose/etiologia , Álcalis , Humanos , Transplante de Rim/efeitos adversos , Estudos Retrospectivos
18.
PeerJ Comput Sci ; 7: e549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084940

RESUMO

Due to the application of vital signs in expert systems, new approaches have emerged, and vital signals have been gaining space in biometrics. One of these signals is the electroencephalogram (EEG). The motor task in which a subject is doing, or even thinking, influences the pattern of brain waves and disturb the signal acquired. In this work, biometrics with the EEG signal from a cross-task perspective are explored. Based on deep convolutional networks (CNN) and Squeeze-and-Excitation Blocks, a novel method is developed to produce a deep EEG signal descriptor to assess the impact of the motor task in EEG signal on biometric verification. The Physionet EEG Motor Movement/Imagery Dataset is used here for method evaluation, which has 64 EEG channels from 109 subjects performing different tasks. Since the volume of data provided by the dataset is not large enough to effectively train a Deep CNN model, it is also proposed a data augmentation technique to achieve better performance. An evaluation protocol is proposed to assess the robustness regarding the number of EEG channels and also to enforce train and test sets without individual overlapping. A new state-of-the-art result is achieved for the cross-task scenario (EER of 0.1%) and the Squeeze-and-Excitation based networks overcome the simple CNN architecture in three out of four cross-individual scenarios.

19.
Acta Physiol (Oxf) ; 230(2): e13526, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564464

RESUMO

AIM: Several Na+ -dependent phosphate cotransporters, namely NaPi-IIb/SLC34A2, Pit-1/SLC20A1 and Pit-2/SLC20A2, are expressed at the apical membrane of enterocytes but their contribution to active absorption of phosphate is unclear. The aim of this study was to compare their pattern of mRNA expression along the small and large intestine and to analyse the effect of intestinal depletion of Pit-2 on phosphate homeostasis. METHODS: Intestinal epithelial Pit-2-deficient mice were generated by crossing floxed Pit-2 with villin-Cre mice. Mice were fed 2 weeks standard or low phosphate diets. Stool, urine, plasma and intestinal and renal tissue were collected. Concentration of electrolytes and hormones, expression of mRNAs and proteins and intestinal transport of tracers were analysed. RESULTS: Intestinal mRNA expression of NaPi-IIb and Pit-1 is segment-specific, whereas the abundance of Pit-2 mRNA is more homogeneous. In ileum, NaPi-IIb mRNA expression is restricted to enterocytes, whereas Pit-2 mRNA is found in epithelial and non-epithelial cells. Overall, their mRNA expression is not regulated by dietary phosphate. The absence of Pit-2 from intestinal epithelial cells does not affect systemic phosphate homeostasis under normal dietary conditions. However, in response to dietary phosphate restriction, Pit-2-deficient mice showed exacerbated hypercalciuria and sustained elevation of 1,25(OH)2 vitamin D3 . CONCLUSIONS: In mice, the intestinal Na+ /phosphate cotransporters are not coexpressed in all segments. NaPi-IIb but not Pit-2 mRNA is restricted to epithelial cells. Intestinal epithelial Pit-2 does not contribute significantly to absorption of phosphate under normal dietary conditions. However, it may play a more significant role upon dietary phosphate restriction.


Assuntos
Colecalciferol , Fosfatos , Animais , Dieta , Intestinos , Camundongos , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética
20.
Kidney Int ; 97(2): 253-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31980072

RESUMO

Potassium channels are important to control membrane potential and drive epithelial transport processes. In this issue of Kidney International, Bignon et al. report the role of the Kir4.2 K+-channel, localized at the basolateral membrane of proximal tubules, in the reabsorption of bicarbonate and the modulation of renal ammoniagenesis. The findings have implications for our understanding of how the kidney reacts to hypokalemia, an acid load, and the metabolic acidosis of patients with advanced stages of chronic kidney disease.


Assuntos
Hipopotassemia , Potássio , Equilíbrio Ácido-Base , Amônia , Animais , Bicarbonatos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...