Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(7): 989-997, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680999

RESUMO

Each year, billions of flying and swimming migrants negotiate the challenging displacement imposed by travelling through a flowing medium. However, little is known about how the ability to cope with drift improves through life and what mechanisms drive its development. We examined 3,140 days of migration by 90 GPS-tagged raptorial black kites (Milvus migrans) aged 1-27 years to show that the ability to compensate for lateral drift develops gradually through many more years than previously appreciated. Drift negotiation was under strong selective pressure, with inferior navigators subject to increased mortality. This progressively selected for adults able to compensate for current cross flows and for previously accumulated drift in a flexible, context-dependent and risk-dependent manner. Displacements accumulated en route carried over to shape the wintering distribution of the population. For many migrants, migratory journeys by younger individuals represent concentrated episodes of trait selection that shape adult populations and mediate their adaptation to climate change.


Assuntos
Aves Predatórias , Vento , Animais , Aves , Mudança Climática , Humanos , Estações do Ano
2.
PLoS One ; 12(10): e0185344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020062

RESUMO

Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years with solar GPS tags, to evaluate the causes and triggers of fix and data retrieval loss biases. We compare two models of solar GPS tags using different data retrieval systems (Argos vs GSM-GPRS), and programmed with different duty cycles. Neither of the models was able to accomplish the duty cycle programed initially. Fix and data retrieval loss rates were always greater than expected, and showed non-random gaps in GPS locations. Number of fixes per month of tracking was a bad criterion to identify tags with smaller biases. Fix-loss rates were four times higher due to battery drain than due to poor GPS satellite geometry. Both tag models were biased due to the uneven solar energy available for the recharge of the tag throughout the annual cycle, resulting in greater fix-loss rates in winter compared to summer. In addition, we suggest that the bias found along the diurnal cycle is linked to a complex three-factor interaction of bird flight behavior, topography and fix interval. More fixes were lost when vultures were perching compared to flying, in rugged versus flat topography. But long fix-intervals caused greater loss of fixes in dynamic (flying) versus static situations (perching). To conclude, we emphasize the importance of evaluating fix-loss bias in current tracking projects, and deploying GPS tags that allow remote duty cycle updates so that the most appropriate fix and data retrieval intervals can be selected.


Assuntos
Aves/fisiologia , Ritmo Circadiano/fisiologia , Sistemas de Informação Geográfica , Estações do Ano , Luz Solar , Análise de Variância , Animais , Viés , Modelos Lineares
3.
Sci Rep ; 7(1): 8798, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821735

RESUMO

Conservation of migratory species faces the challenge of understanding the ecological requirements of individuals living in two geographically separated regions. In some cases, the entire population of widely distributed species congregates at relatively small wintering areas and hence, these areas become a priority for the species' conservation. Satellite telemetry allows fine tracking of animal movements and distribution in those less known, often remote areas. Through integrating satellite and GPS data from five separated populations comprising most of the breeding range, we created a wide habitat suitability model for the Eleonora's falcon on its wintering grounds in Madagascar. On this basis, we further investigated, for the first time, the impact of climate change on the future suitability of the species' wintering areas. Eleonora's falcons are mainly distributed in the north and along the east of Madagascar, exhibiting strong site fidelity over years. The current species' distribution pattern is associated with climatic factors, which are likely related to food availability. The extent of suitable areas for Eleonora's falcon is expected to increase in the future. The integration of habitat use information and climatic projections may provide insights on the consequences of global environmental changes for the long-term persistence of migratory species populations.


Assuntos
Migração Animal , Aves Predatórias , Estações do Ano , Animais , Ecossistema , Geografia , Madagáscar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA