Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(15): 7007-7018, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557070

RESUMO

Double perovskite oxides, characterized by their tunable magnetic properties and robust interconnection between the lattice and magnetic degrees of freedom, present an enticing foundation for advanced magnetic refrigeration materials. Herein, we delve into the influence of rare-earth elements on RSrCoFeO6 (R = Sm, Eu) disordered double perovskites by examining their structural, electronic, magnetic, and magnetocaloric properties. Temperature-dependent synchrotron X-ray diffraction analysis confirmed the stability of the orthorhombic phase (Pnma) across a wide temperature range. X-ray photoemission spectroscopy revealed that both Sm and Eu are in the 3+ state, whereas multiple states for Co2+/3+ and Fe3+/4+ are identified. The magnetic investigation and magnetocaloric effect (MCE) analysis brought to light the presence of a long-range antiferromagnetic (AFM) order with a second-order phase transition (SOPT) in both samples. The maximum magnetic entropy change ΔSMmax was approximately 0.9 J/kg K for both samples at applied field 0-7 T, manifesting prominently above Neel temperatures TN ≈ 93 K (Sm) and 84 K (Eu). Nevertheless, different relative cooling powers (RCP) of 112.6 J/kg (Sm) and 95.5 J/kg (Eu) were observed. A detailed analysis of the temperature-dependent lattice parameters shed light on a distinct magnetocaloric effect across the magnetic transition temperature, unveiling an anisotropic thermal expansion [αV = 1.41 × 10-5 K-1 (Sm) and αV = 1.54 × 10-5 K-1 (Eu)] wherein the thermal expansion axial ratio αbSm/αbEu = 0.61 became lower with increasing temperature, which suggests that the Eu sample experiences a greater thermal expansion in the b-axis direction. At the atomic bonding level, the evidence for magnetoelastic coupling around the magnetic transition temperatures TN was found through the anomalies along the average Co/Fe-O bond distance, formal valence, octahedral distortion, as well as an anisotropic lattice expansion.

2.
Inorg Chem ; 62(48): 19741-19748, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044828

RESUMO

Magnetic refrigeration based on the magnetocaloric effect (MCE) in metal-organic frameworks (MOF) is regarded as an attractive approach to create more sustainable cooling systems with higher efficiency than traditional ones. Here, we report a study of the MCE in a series of rare-earth-based MOFs. We have considered the selection of the rare-earth cation by investigating materials belonging to the α-rare-earth polymeric framework-4 (α-RPF-4) MOF family, synthesized with different rare-earth cations, and observed that paramagnetic moment and saturation magnetization play an important role in enhancing the magnetic entropy change ΔSM. The effect of structural parameters has also been considered by investigating three classes of metal-organic Gd materials built up from different types of inorganic secondary building units, including clusters (as in Gd-UiO-66), one-dimensional (as in α-RPF-4), and layered (as in Gd-LRH) conformations. Moreover, the analysis of the hydrostatic pressure influence reveals a significant increase in the -ΔSM and relative cooling power (RCP) with values between 4.3 and 16.3 and 121-509 J/kg. Specifically, the RCPmax found was ∼683 J/kg for Gd-UiO-66, which is higher than the one recently observed for Gd2SiO5 (649.5 J/kg). The present study demonstrates that the engineering of metal-organic framework systems based on high Gd densities may favor enhancing of magnetocaloric responses even at low pressures, thus promoting a new design strategy for efficient cooling devices.

3.
ACS Appl Mater Interfaces ; 15(43): 50290-50301, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862555

RESUMO

Transition-metal chalcogenides with intercalated layered structures are interesting systems in material physics due to their attractive electronic and magnetic properties, with applications in the fields of magnetic refrigerators, catalysts, and thermoelectrics, among others. In this work, we studied in detail the structural, electronic, and magnetic properties of (Fe,Ti)-based sulfides with formula FexTi2S4 (x = 0.24, 0.32, and 0.42), prepared as polycrystalline materials under high-pressure conditions. They present a layered Heideite-type crystal structure, as assessed by synchrotron X-ray diffraction. A local structure analysis using Fe K-edge extended X-ray-absorption fine structure (EXAFS) data unveiled a conspicuous contraction of the main Fe-S bond in Fe0.24Ti2S4 at the vicinity of the magnetic transition 60-80 K. We suggest that this anomaly is related to magnetoelastic coupling effects. The EXAFS analysis allowed extraction of the Einstein temperatures (θE), i.e., the phonon contribution to the specific heat, for the two bond pairs Fe-S(1) [θE ≈318 K; 290 K (C/T)] and Fe-Ti(1) [θE ≈218 K; 190 K (C/T)]. In addition to the structural and local vibrational measurements, we probed the magnetic properties using magneto-calorimetry, magnetometry under applied pressure, magnetoresistance (MR), and Hall effect measurements. We observed the appearance of a broad peak in the specific heat around 120 K in the x = 0.42 compound that we associated with an antiferromagnetic ordering electronic transition. We found that the antiferromagnetic transition temperature is pressure and composition sensitive and reduces at 1.2 GPa by ∼12 and ∼3 K, for the members with x = 0.24 and x = 0.42, respectively. Similarly, the saturation magnetization in the ordered phase depends on both pressure and iron content, reducing its value by 50, 90, and 30% for x = 0.24, 0.32, and 0.42, respectively. We observed clear jumps in the magnetic hysteresis loops, MR, and anomalous Hall effect (AHE) below 2 K at fields around 2-4 T. We associated this observation with the metamagnetic transitions; from the Berry-curvature a decoupling parameter of SH = 0.12 V-1 is determined. Comparison of the results on the temperature-dependent magnetization, MR, and AHE elucidates a strong inelastic scattering contribution to the AHE at higher temperatures due to the cluster spin-glass phase.

4.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614710

RESUMO

In this work, Gd-filled skutterudite GdxCo4Sb12 was prepared using one step method under high pressure in a piston-cylinder-based press at 3.5 GPa and moderate temperature of 800 °C. A detailed structural characterization was performed using synchrotron X-ray diffraction (SXRD), revealing a filling fraction of x = 0.033(2) and an average bond length of 3.3499(3) Å. The lattice thermal expansion accessed via temperature-dependent SXRD led to a precise determination of a Debye temperature of 322(3) K, from the fitting of the unit-cell volume expansion using the second order Grüneisen approximation. This parameter, when evaluated through the mean square displacements of Co and Sb, displayed a value of 265(2) K, meaning that the application of the harmonic Debye theory underestimates the Debye temperature in skutterudites. Regarding the Gd atom, its intrinsic disorder value was ~5× and ~25× higher than those of the Co and Sb, respectively, denoting that Gd has a strong rattling behavior with an Einstein temperature of θE = 67(2) K. As a result, an ultra-low thermal conductivity of 0.89 W/m·K at 773 K was obtained, leading to a thermoelectric efficiency zT of 0.5 at 673 K.

5.
Inorg Chem ; 60(7): 4475-4496, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710867

RESUMO

Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn5(CO3)2(OH)6/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with VZn and VO+ being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m-2). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [VZn+VO+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.

6.
Micron ; 142: 102996, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360436

RESUMO

We performed qualitative and quantitative analysis of surfaces of kefir biofilms loaded with Amazon rainforest fruit extract. Scanning electron microscopy and atomic force microscopy were used to evaluate the micromorphology of the biofilms. The films surface displayed a lower density of microorganisms (∼ 0.061 microorganisms/µm2) for the lowest concentration of fruit extract, however, a greater density (∼0.220 microorganisms/µm2) was observed for the higher concentration. Height stereometric parameters revealed that the biofilms with the highest concentration presented the highest roughness. However, almost all the stereometric parameters related to texture showed no significant difference. Furthermore, the Hurst coefficients of the average power spectrum density were similar for all biofilms. Fractal parameters confirmed that higher concentrations of fruit extract induced a superior topographic irregularity. However, fractal lacunarity does not show any significant difference confirming the similarity of the microtextures. Moreover, fractal succolarity and surface entropy exhibited values that suggested ideal percolation and strong topographic uniformity, respectively, indicating that these films can uniformly adhere to other surfaces. Our results confirm that the stereometric and fractal parameters can be relevant for the surface characterization of microbial films, which can be of great importance to the biomedical field.


Assuntos
Biofilmes/crescimento & desenvolvimento , Kefir/microbiologia , Extratos Vegetais , Fenômenos Fisiológicos Bacterianos , Cacau/química , Fractais , Frutas/química , Imageamento Tridimensional , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Floresta Úmida , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...