Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1359560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720787

RESUMO

Introduction: The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods: We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results: Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 µM) and CPA (1 µM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion: We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.

2.
Ann N Y Acad Sci ; 1535(1): 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602714

RESUMO

Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.


Assuntos
Técnicas de Patch-Clamp , Células Piramidais , Animais , Técnicas de Patch-Clamp/métodos , Camundongos , Células Piramidais/fisiologia , Potenciais da Membrana/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Camundongos Endogâmicos C57BL , Masculino
3.
Nat Commun ; 15(1): 2245, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472279

RESUMO

Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.

4.
Small ; : e2310275, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221708

RESUMO

The interfacial carrier non-radiative recombination caused by buried defects in electron transport layer (ETL) material and the energy barrier severely hinders further improvement in efficiency and stability of perovskite solar cells (PSCs). In this study, the effect of the SnO2 ETL doped with choline chloride (CC), acetylcholine chloride (AC), and phosphocholine chloride sodium salt (PCSS) are investigated. These dopants modify the interface between SnO2 ETL and perovskite layer, acting as a bridge through synergistic effects to form uniform ETL films, enhance the interface contact, and passivate defects. Ultimately, compared with CC (which with ─OH) and AC (which with C═O), the PCSS with P═O and sodium ions groups is more beneficial for improving performance. The device based on PCSS-doped SnO2 ETL achieves an efficiency of 23.06% with a high VOC of 1.2 V, which is considerably higher than the control device (20.55%). Moreover, after aging for 500 h at a temperature of 25 °C and relative humidity (RH) of 30-40%, the unsealed device based on SnO2 -PCSS ETL maintains 94% of its initial efficiency, while the control device only 80%. This study provides a meaningful reference for the design and selection of ideal pre-buried additive molecules.

5.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330642

RESUMO

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

6.
Small Methods ; 8(2): e2300564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37462256

RESUMO

Incontrovertibly there is an increasing demand for the development of benign inks suitable for fabrication of high-performing perovskite-based thin film functional layers. Nevertheless, most reported perovskite precursors rely on the use of highly toxic solvents such as acetonitrile, 2-methoxyethanol, dimethylformamide, and many others. Hence, there is a strong imperative for the development of novel and greener inks, which will facilitate smoother commercialization of technologies based on functional perovskite films. Therefore, four perovskite precursors are studied, some of which consist of up to 90% ethanol. All inks are developed to fulfill the requirements of a high-throughput deposition compatible with roll-to-roll techniques at room temperature, assisted by an air knife for instant solvent removal. Two of the inks are particularly suitable for the fabrication of high-quality and densely packed multi-crystalline (CH3 NH3 )PbI3 layers, as confirmed by numerous nanoscale spectroscopic and material characterization techniques. Additionally, large-area photoluminescence (PL) imaging is demonstrated to improve the quality of the deposited perovskite films, with a route to enhance deposition uniformity when upscaling for manufacture. The genuine potential of the developed greener perovskite inks is demonstrated with the fabrication of solar cells with power conversion efficiencies above 19.5%.

7.
Adv Sci (Weinh) ; 10(35): e2304261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916896

RESUMO

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70 BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy-1  cm-2 with respect to the bismuth oxide (Bi2 O3 ) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm-2 .

8.
J Mater Chem B ; 11(42): 10147-10157, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849354

RESUMO

Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate-protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 µA and 5 µA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.


Assuntos
Escherichia coli , Manose , Humanos , Reprodutibilidade dos Testes , Bactérias , Poliésteres
9.
iScience ; 26(9): 107570, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664622

RESUMO

Rapid, reliable, sensitive, portable, and accurate diagnostics are required to control disease outbreaks such as COVID-19 that pose an immense burden on human health and the global economy. Here we developed a loop-mediated isothermal amplification (LAMP)-based electrochemical test for the detection of SARS-CoV-2 that causes COVID-19. The test is based on the oxidation-reduction reaction between pyrophosphates (generated from positive LAMP reaction) and molybdate that is detected by cyclic voltammetry using inexpensive and disposable carbon screen printed electrodes. Our test showed higher sensitivity (detecting as low as 5.29 RNA copies/µL) compared to the conventional fluorescent reverse transcriptase (RT)-LAMP. We validated our tests using human serum and saliva spiked with SARS-CoV-2 RNA and clinical (saliva and nasal-pharyngeal) swab samples demonstrating 100% specificity and 93.33% sensitivity. Our assay provides a rapid, specific, and sensitive test with an electrochemical readout in less than 45 min that could be adapted for point-of-care settings.

10.
ACS Appl Mater Interfaces ; 15(39): 46483-46492, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748040

RESUMO

Organic-inorganic hybrid perovskite solar cells are fabricated using polycrystalline perovskite thin films, which possess high densities of point and surface defects. The surface defects of perovskite thin films are the key factors that affect the device performance. Therefore, the reduction of harmful defects is the primary task for improving device performance. Therefore, in this study, high-quality perovskite thin films are prepared using an ionic liquid, dithiocarbamate diethylamine (DADA), to passivate the interface. The electron-rich sulfur atom in the DADA molecule chelates with the uncoordinated lead ion in the perovskite films, and the diethylammonium cation forms a hydrogen bond with the free iodine ion, which further improves the passivation. The synergistic passivation and improved morphology of the perovskite thin films substantially reduce the number of charged defects on the film surface and prolong the carrier lifetime. In addition, the DADA surface treatment increases the work function of the perovskite film, which is beneficial for carrier transport. Under standard solar-lighting conditions, the power conversion efficiency (PCE) of the device increases from 19.13 to 21.36%, and the fill factor is as high as 83.17%. Owing to both the hydrophobicity of DADA molecules and the passivation of ion defects, the PCE of the device remains above 80%, even for the device stored for 500 h in air at a relative humidity of 65%, and the device stability is substantially improved.

11.
Patterns (N Y) ; 4(5): 100753, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37223266

RESUMO

We endorse the ideas presented by the authors Klöckl et al. on the need of a mixed bag of energy supplies, with this likely being a combination of solar, wind, hydro, and nuclear in the future. Nevertheless, based on our analysis, we believe that the increased deployment capacity of solar photovoltaic (PV) systems will decrease their cost more than wind, making solar PV important in meeting the Intergovernmental Panel on Climate Change (IPCC) requirements for greater sustainability.

12.
Patterns (N Y) ; 4(5): 100735, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37223275

RESUMO

Solar photovoltaic (PV) electricity represents one of the most promising sources of clean and affordable energy; however, the share of solar power in electricity production remains low, primarily because of the high installation costs. By conducting a large-scale analysis of electricity pricing, we show that solar PV systems are quickly becoming one of the most competitive sources of electricity. Collecting a contemporary UK dataset of 2010-2021, we analyze the historical levelized cost of electricity for several PV system sizes, project until 2035, and conduct a sensitivity analysis. The cost of PV electricity is currently at about 149 £/MWh for the smallest-scale and 51 £/MWh for large-scale PV systems, already lower than the wholesale price of electricity, with PV systems predicted to get cheaper by 40%-50% until 2035. The government should focus on supporting solar PV system developers with benefits such as simpler land purchases for PV farms or preferential loans with low interest rates.

13.
Sci Adv ; 9(11): eadd6947, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930711

RESUMO

Future space travel needs ultra-lightweight and robust structural materials that can withstand extreme conditions with multiple entry points to orbit to ensure mission reliability. This is unattainable with current inorganic materials. Ultra-highly stable carbon fiber reinforced polymers (CFRPs) have shown susceptibility to environmental instabilities and electrostatic discharge, thereby limiting the full lightweight potential of CFRP. A more robust and improved CFRP is needed in order to improve space travel and structural engineering further. Here, we address these challenges and present a superlattice nano-barrier-enhanced CFRP with a density of ~3.18 g/cm3 that blends within the mechanical properties of the CFRP, thus becoming part of the composite itself. We demonstrate composites with enhanced radiation resistance coupled with electrical conductivity (3.2 × 10-8 ohm⋅m), while ensuring ultra-dimensionally stable physical properties even after temperature cycles from 77 to 573 K.

14.
Mikrochim Acta ; 190(2): 55, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645527

RESUMO

A highly sensitive electrochemical sensor is reported for glucose detection using carbon nanotubes grown in situ at low temperatures on photolithographically defined gold microelectrode arrays printed on a glass substrate (CNTs/Au MEA). One of the main advantages of the present design is its potential to monitor 64 samples individually for the detection of glucose. The selectivity of the fabricated MEA towards glucose detection is achieved via modification of CNTs/Au MEA by immobilizing glucose oxidase (GOx) enzyme in the matrix of poly (paraphenylenediamine) (GOx/poly (p-PDA)/CNTs/Au MEA). The electrocatalytic and electrochemical responses of the proposed sensing platform towards glucose determination were examined via cyclic voltammetry and electrochemical impedance spectroscopy. The developed impedimetric biosensor exhibits a good linear response towards glucose detection, i.e., 0.2-27.5 µM concentration range with sensitivity and detection limits of 168.03 kΩ-1 M-1 and 0.2 ± 0.0014 µM, respectively. The proposed glucose biosensor shows excellent reproducibility, good anti-interference property, and was successfully tested in blood serum samples. Further, the applicability of the proposed sensor was successfully validated through HPLC. These results supported the viability of using such devices for the simultaneous detection of multiple electroactive biomolecules of physiological relevance.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Glucose , Nanotubos de Carbono/química , Microeletrodos , Ouro/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
15.
ChemSusChem ; 16(7): e202202092, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36629755

RESUMO

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has been greatly improved recently. However, in organic-inorganic polycrystalline perovskite films many defects inevitably exist, which limits the PCE and stability of PSCs. Herein, a small organic molecule 2-chlorothiazole-4-carboxylic acid (SN) is spin coated on a perovskite film to enhance the performance of PSCs. We find that the multifunctional molecule SN reacts with under-coordinated Pb2+ ions and I- vacancies because of the presence of the sulfur and nitrogen donor atoms, and the -COOH groups, which are conducive to suppressing charge recombination and passivating defects. Even more, the introduction of the SN layer can effectively adjust the energy level alignment, which is conducive to the separation and extraction of charge carriers in PSCs. Therefore, devices with SN modification show a champion PCE of 22.55 %. Besides, PSCs with SN show impressive stability, retaining 96 % of its initial PCE after storage in ambient air for 500 h.

16.
Adv Sci (Weinh) ; 10(8): e2206786, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646512

RESUMO

The electrocatalysts are widely applied in lithium-sulfur (Li-S) batteries to selectively accelerate the redox kinetics behavior of Li2 S, in which bifunctional active sites are established, thereby improving the electrochemical performance of the battery. Considering that the Li-S battery is a complex closed "black box" system, the internal redox reaction routes and active sites cannot be directly observed and monitored especially due to the distribution of potential active-site structures and their dynamic reconstruction. Empirical evidence demonstrates that traditional electrochemical test methods and theoretical calculations only probe the net result of multi-factors on an average and whole scale. Herein, based on the amorphous TiO2- x @Ni selective bifunctional model catalyst, these limitations are overcome by developing a system that couples the light field and in situ irradiated X-ray photoelectron spectroscopy to synergistically convert the "black box" battery into a "see-through" battery for direct observation of the charge transportation, thus revealing that amorphous TiO2- x and Ni nanoparticle as the oxidation and reduction sites selectively promote the decomposition and nucleation of Li2 S, respectively. This work provides a universal method to achieve a deeper mechanistic understanding of bidirectional sulfur electrochemistry.

17.
ACS Nano ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622047

RESUMO

Thermal control is essential to guarantee the optimal performance of most advanced electronic devices or systems. In space, orbital satellites face the issues of high thermal gradients, heating, and different thermal loads mediated by differential illumination from the Sun. Todaýs state-of-the-art thermal control systems provide protection; however, they are bulky and restrict the mass and power budgets for payloads. Here, we develop a lightweight optical superlattice nanobarrier structure to provide a smart thermal control solution. The structure consists of a moisture and outgassing physical barrier (MOB) coupled with atomic oxygen (AO)-UV protection functionality. The nanobarrier exhibits transmission and reflection of light by controlling the optical gap of individual layers to enable high infrared emissivity and variable solar absorptivity (minimum ΔαS = 0.30) across other wavelengths. The multifunctional coating can be applied to heat-sensitive substrates by means of a bespoke room-temperature process. We demonstrate enhanced stability, energy-harvesting capability, and power savings by facilitating the radiation cooling and facility for active self-reconfiguration in orbit. In this way, the reduction of the operating temperature from ∼120 to ∼60 °C on space-qualified and nonmechanically controlled composite structures is also demonstrated.

18.
Environ Geochem Health ; 45(6): 2647-2662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36094692

RESUMO

Chronic kidney disease of uncertain aetiology (CKDu) is an advanced version of chronic kidney disease (CKD) which bears a high burden on the world health economy. More than 200 articles were analysed to understand the disease responsible for more than 30,000 deaths per year. CKDu is a non-communicable occupational disease that has a progressive deterioration of the kidney in the absence of CKD risk factors such as hypertension, diabetes and glomerulonephritis, while the diagnosis is only possible at the later stages when kidney function is no longer effective. Published evidence for the existence of CKDu was found for around 35 countries. This is a growing health issue in Asia, Central America, Africa and Middle East with identified hot spots. Despite many research studies over decades, the exact root causes are still uncertain. Six main suspected causative factors are identified. Those are heat stress, strenuous labour, dehydration, use of agrochemicals, exposure to heavy metals and the use of polluted water and agricultural lands. This review summarizes four key areas which are CKDu and its general medical background, worldwide prevalence, suspected causative factors and potential circumventing steps to mitigate against CKDu. The importance of further studies addressing early detection and surveillance methods, contribution of nephrotoxins in environmental health, soil chemistry on transporting nephrotoxins, geological parameters which influence the prevalence of the disease and other related sectors to overcome the mysterious nature is highlighted. Mitigation steps to lessen the burden of CKDu are also identified.


Assuntos
Doenças Renais Crônicas Idiopáticas , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Rim , Fatores de Risco , Agroquímicos , Sri Lanka/epidemiologia
19.
Sci Rep ; 12(1): 7411, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523822

RESUMO

Halide perovskite materials have been extensively explored for their unique electrical, optical, magnetic, and catalytic properties. Most notably, solar cells based on perovskite thin films have improved their power conversion efficiency from 3.8% to over 25% during the last 12 years. However, it is still a challenge to develop a perovskite-based ink, suitable for upscaling the fabrication process of high-quality perovskite films with extreme purity, good crystallinity, and complete coverage over the deposition area. This is particularly important if the perovskite films are to be used for the scaled production of optoelectronic devices. Therefore, to make halide perovskites commercially available for various applications, it is vital to develop a reliable and highly robust deposition method, which can then be transferred to industry. Herein, the development of perovskite precursor inks suitable for use at low-temperature and vacuum-free solution-based deposition processes is reported. These inks can be further tailored according to the requirements of the deposition method, i.e., we propose their use with the industrially viable deposition technique called "slot-die coating". Furthermore, a route for the preparation of low-cost and high-volume manufacturing of perovskite films on both rigid and flexible substrates is suggested in this paper. The presented approach is suitable for the fabrication of any functional layers of perovskites, that can be employed in various scaled applications, and it seeks the potential and the methodology for perovskite film deposition that is scalable to industrial standards.

20.
Physiol Rep ; 10(9): e15189, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510320

RESUMO

Biological effects of electromagnetic fields (EMFs) have previously been identified for cellular proliferation and changes in expression and conduction of diverse types of ion channels. The major effect elicited by EMFs seems to be directed toward Ca2+ homeostasis. This is particularly remarkable since Ca2+ acts as a central modulator in various signaling pathways, including, but not limited to, cell differentiation and survival. Despite this, the mechanisms underlying this modulation have yet to be unraveled. Here, we assessed the effect of EMFs on intracellular [Ca2+ ], by exposing HEK 293 cells to both radio-frequency electromagnetic fields (RF-EMFs) and static magnetic fields (SMFs). We detected a constant and significant increase in [Ca2+ ] subsequent to exposure to both types of fields. Strikingly, the increase was nulled by administration of 10 µM Thapsigargin, a blocker of sarco/endoplasmic reticulum Ca2+ -ATPases (SERCAs), indicating the involvement of the endoplasmic reticulum (ER) in EMF-related modulation of Ca2+ homeostasis.


Assuntos
Cálcio , Campos Eletromagnéticos , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Tapsigargina/metabolismo , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...