Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 256: 124285, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706502

RESUMO

Systemic sclerosis (SSc) is a chronic, autoimmune disease that primarily affects connective tissue. SSc can be classified into limited cutaneous (lSSc) and diffuse cutaneous (dSSc). Oncostatin M receptor (sOSMR) is an important inflammatory biomarker expressed in the serum of patients with autoimmune diseases. A nanoengineered immunosensor surface was developed. The biosensor was composed of a conductive layer of polypyrrole, electrodeposited gold nanoparticles, and sOSMR protein for anti-human OSMR monoclonal antibody biorecognition. The electrochemical response evaluated by cyclic voltammetry and electrochemical impedance spectroscopy indicated the detection of the target analyte present in clinical samples from lSSc and dSSc patients. The voltammetric anodic shift for lSSc specimens was 82.7% ± 0.9-93.6% ± 3.2, and dSSc specimens was 118.7 ± 2.6 to 379.6 ± 2.6, revealing a differential diagnostic character for SSc subtypes. The sensor platform was adapted for identifying sOSMR, using anti-OSMR antibodies as bioreceptors. With a linear response range estimated from 0.005 to 500 pg mL-1 and a limit of detection of 0.42 pg mL-1, the sensing strategy demonstrated high sensitivity in identifying the human OSMR protein in clinical samples. The proposed biosensor is a promising and innovative tool for SSc-related biomarker research.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Escleroderma Sistêmico , Humanos , Autoanticorpos , Biomarcadores , Ouro , Imunoensaio , Polímeros , Pirróis , Receptores de Oncostatina M , Escleroderma Sistêmico/diagnóstico , Técnicas Eletroquímicas
2.
Enzyme Microb Technol ; 160: 110088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35777193

RESUMO

The increasing number of multidrug resistance microorganisms is an alarming threat, and their rapid detection is essential to prevent nosocomial, foodborne, or waterborne infections. Many peptides derived from the venom of wasp Synoeca surinama have antimicrobial activity against Gram-positive and Gram-negative bacteria. Synoeca-MP, an antimicrobial peptide (AMP) from mastoparan family, seems to increase bacterial membrane permeability, promoting cytotoxicity and membrane disruption. Here Synoeca-MP was evaluated as biorecognition element tethered over chitosan-coated magnetic nanoparticles (Fe3O4-Chit). The transducing layer of the biosensor was developed from the self-assembling of 4-mercaptobenzoic acid (4-MBA) monolayer onto gold substrate. Atomic force microscopy (AFM) analyses confirmed the biointeraction between AMP and different pathogens membranes. The fabrication and performance of the biosensing assembly were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Detection of Enterococcus faecalis (G+), Klebsiella pneumoniae (G-), Pseudomonas aeruginosa (G-), and Candida tropicalis was assessed in a recognition range from 101 to 105 CFU.mL-1. An instrumental limit of detection of 10 CFU.mL-1 was obtained for each specimen. However, the device presented a preferential selectivity towards Gram-negative bacteria. The proposed biosensor is a sensitive, fast, and straightforward platform for microbial detection in aqueous samples, envisaged for environmental monitoring applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Antibacterianos/farmacologia , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos e Proteínas de Sinalização Intercelular , Nanopartículas de Magnetita/química , Venenos de Vespas
3.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34607201

RESUMO

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Anticorpos Imobilizados , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Limite de Detecção , Microeletrodos , Polímeros , Pirróis , SARS-CoV-2
4.
Microbiol Res ; 251: 126834, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364021

RESUMO

Biosensors are pre-prepared diagnostic devices composed of at least one biological probe. These devices are envisaged for the practical identification of specific targets of microbiological interest. In recent years, the use of narrow-specific probes such as lectins has been proven to distinguish bacteria and glycoproteins based on their superficial glycomic pattern. For instance, Concanavalin A is a carbohydrate-binding lectin indicated as a narrow-specific biological probe for Gram-negative bacteria. As a drawback, Gram-positive bacteria are frequently overlooked from lectin-based biosensing studies because their identification results in low resolution and overlapped signals. In this work, the authors explore the effect that platform nanostructuration has over the electrochemical response of ConA-based platforms constructed for bacterial detection; one is formed of chitosan-capped magnetic nanoparticles, and another is composed of gold nanoparticle-decorated magnetic nanoparticles. The biosensing platforms were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) as a function of bacterial concentration. Our results show that probe-target interaction causes variations in the electrical responses of nanostructured transducers. Moreover, the association of gold nanoparticles to magnetic nanoparticles resulted in an electrical enhancement capable of overcoming low resolution and overlapping Gram-positive identification. Both platforms attained a limit of detection of 10 ° CFU mL-1, which is useful for water analyses and sanitation concerns, where low CFU mL-1 are always expected. Although both platforms were able to detect Gram-negative bacteria, Gram-positives were only correctly differentiated by the gold nanoparticle-decorated magnetic nanoparticles, thus demonstrating the positive influence of hierarchically nanostructured platforms.


Assuntos
Técnicas Biossensoriais , Concanavalina A , Bactérias Gram-Positivas , Técnicas Biossensoriais/métodos , Concanavalina A/farmacologia , Ouro , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas , Transdutores
5.
Talanta ; 220: 121375, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928401

RESUMO

Fungi stand out as primary pathogens present in healthcare-acquired infections, presenting an increased number of cases even using appropriate antifungal therapy. Candida spp. is a predominant microorganism among several fungal pathogens present in the healthcare setting. Candidemia and candidiasis are fungal infections responsible for high morbidity and mortality among ill patients in hospitals. It is noticeable that prolonged hospital stays lead to a higher economic impact and increased risk for developing secondary fungal or even bacterial infections. New fast and sensitive approaches for the detection of Candida species is highly required. Electrochemical biosensors are an excellent alternative to conventional techniques by combining fast analyte detection, low cost, and the possibility of miniaturization. Lectins are carbohydrate-binding proteins with the capability to reach out to the microorganism cell wall. In this work, we proposed the development of an impedimetric biosensor for Candida spp. based on Concanavalin A (ConA) and wheat germ agglutinin (WGA) as recognition agents of the yeast cells. Atomic force microscopy images indicate changes in the biosensor surface after assembly of the molecules and exposure to fungal samples. Electrochemical impedance spectroscopy results revealed a proportional increase of charge transfer resistance (RCT) as fungal CFU increased, where four Candida species were evaluated (Candida krusei, Candida tropicalis, Candida parapsilosis and Candida albicans). The biosensor is useful to differentiate Candida spp. with a detection limit between 102 to 106 CFU mL-1. The obtained biosensor appears as an innovative candidate for the detection and differentiation of pathogenic Candida spp.


Assuntos
Técnicas Biossensoriais , Candida , Antifúngicos , Diferenciação Celular , Humanos , Lectinas , Testes de Sensibilidade Microbiana , Pichia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...