Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37398134

RESUMO

RATIONALE: Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS: We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS: We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS: The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.

2.
Metabolites ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295835

RESUMO

Omics analyses are commonly used for identifying pathways and genes responsible for physiologic and pathologic processes. Though sex is considered a biological variable in rigorous assessments of pulmonary responses to oxidant exposures, the contribution of the murine strain is largely ignored. This study utilized an unbiased integrated assessment of high-resolution metabolomic profiling and RNA-sequencing to explore sex- and strain-dependent pathways in adult mouse lungs. The results indicated that strain exhibited a greater influence than sex on pathways associated with inflammatory and oxidant/antioxidant responses and that interaction metabolites more closely resembled those identified as differentially expressed by strain. Metabolite analyses revealed that the components of the glutathione antioxidant pathway were different between strains, specifically in the formation of mixed disulfides. Additionally, selenium metabolites such as selenohomocystiene and selenocystathionine were similarly differentially expressed. Transcriptomic analysis revealed similar findings, as evidenced by differences in glutathione peroxidase, peroxiredoxin, and the inflammatory transcription factors RelA and Jun. In summary, an multi-omics integrated approach identified that murine strain disproportionately impacts baseline expression of antioxidant systems in lung tissues. We speculate that strain-dependent differences contribute to discrepant pulmonary responses in preclincal mouse models, with deleterious effects on clinical translation.

3.
Oxid Med Cell Longev ; 2020: 2908271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587658

RESUMO

Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.


Assuntos
Envelhecimento/patologia , Células Epiteliais/enzimologia , Deleção de Genes , Heme Oxigenase-1/metabolismo , Hiperóxia/enzimologia , Hiperóxia/patologia , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Células Epiteliais/patologia , Feminino , Genótipo , Integrases/metabolismo , Pulmão/embriologia , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recombinação Genética/genética , Uteroglobina/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1165-L1171, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292070

RESUMO

Bronchopulmonary dysplasia (BPD), a long-term respiratory morbidity of prematurity, is characterized by attenuated alveolar and vascular development. Supplemental oxygen and immature antioxidant defenses contribute to BPD development. Our group identified thioredoxin reductase-1 (TXNRD1) as a therapeutic target to prevent BPD. The present studies evaluated the impact of the TXNRD1 inhibitor aurothioglucose (ATG) on pulmonary responses and gene expression in newborn C57BL/6 pups treated with saline or ATG (25 mg/kg ip) within 12 h of birth and exposed to room air (21% O2) or hyperoxia (>95% O2) for 72 h. Purified RNA from lung tissues was sequenced, and differential expression was evaluated. Hyperoxic exposure altered ~2,000 genes, including pathways involved in glutathione metabolism, intrinsic apoptosis signaling, and cell cycle regulation. The isolated effect of ATG treatment was limited primarily to genes that regulate angiogenesis and vascularization. In separate studies, pups were treated as described above and returned to room air until 14 days. Vascular density analyses were performed, and ANOVA indicated an independent effect of hyperoxia on vascular density and alveolar architecture at 14 days. Consistent with RNA-seq analyses, ATG significantly increased vascular density in room air, but not in hyperoxia-exposed pups. These findings provide insights into the mechanisms by which TXNRD1 inhibitors may enhance lung development.


Assuntos
Ar , Aurotioglucose/farmacologia , Hiperóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Doença Aguda , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , DNA/biossíntese , Glutationa/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...