Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123734, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458523

RESUMO

Black carbon (BC) and particle number (PN) concentrations are usually high in cities due to traffic emissions. European mitigation policies, including Euro emission standards, have been implemented to curb these emissions. We analyzed BC and PN (particle diameter Dp > 4 nm) concentrations in Stockholm spanning the years 2013-2019 (BC) and 2009-2019 (PN) measured at street canyon and rooftop sites to assess the effectiveness of the implemented policies. Combining these data with inverse dispersion modeling, we estimated BC and PN emission factors (EFBC and EFPN) for the mixed fleet, reflecting real-world driving conditions. The pollutants showed decreasing trends at both sites, but PN concentrations remained high at the canyon site considering the World Health Organization (WHO) recommendations. BC concentrations declined more rapidly than PN concentrations, showing a -9.4% and -4.9% annual decrease at the canyon and -7.2% and -0.5% at the rooftop site in the years 2013-2019. The EFBC and EFPN trends showed that the mitigation strategies for reducing particulate emissions for on-road vehicles were successful over the study period. However, the introduction of biofuels in the vehicle fleet -ethanol and later rapeseed methyl ester (RME)- increased the concentrations of particles with Dp < 10 nm before the adoption of particulate filters in the exhausts. Stricter Euro emission regulations, especially with diesel particulate filters (DPF) in Euro 5, 6, and VI vehicles, led to 66% decrease in EFBC and 55% in EFPN. Real-world EFBC surpassed HBEFA (Handbook Emission Factors for Road Transport) database values by 2.4-4.8 times; however, direct comparisons between real-world and HBEFA EFPN are difficult due to differences in lower cut-off sizes and measurement techniques. Our results underscore the necessity for revising the HBEFA database, updating laboratory testing methods and portable emission measuring systems (PEMS) measurements to account for liquid condensate contributions to PN measurements.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poeira , Fuligem , Carbono , Veículos Automotores , Tamanho da Partícula
2.
Environ Int ; 178: 108081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451041

RESUMO

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Europa (Continente) , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
3.
Chemosphere ; 332: 138862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150457

RESUMO

Air pollution is a complex mixture of gases and particulate matter (PM) with local and non-local emission sources, resulting in spatiotemporal variability in concentrations and composition, and thus associated health risks. To study this in the greater Stockholm area, a yearlong monitoring campaign with in situ measurements of PM10, PM1, black carbon, NOx, O3, and PM10-sampling was performed. The locations included an Urban and a Rural background site and a Highway site. Chemical analysis of PM10 was performed to quantify monthly levels of polycyclic aromatic compounds (PACs), which together with other air pollution data were used for source apportionment and health risk assessment. Organic extracts from PM10 were tested for oxidative potential in human bronchial epithelial cells. Strong seasonal patterns were found for most air pollutants including PACs, with higher levels during the winter months than summer e.g., highest levels of PM10 were detected in March at the Highway site (33.2 µg/m3) and lowest in May at the Rural site (3.6 µg/m3). In general, air pollutant levels at the sites were in the order Highway > Urban > Rural. Multivariate analysis identified several polar PACs, including 6H-Benzo[cd]pyren-6-one, as possible discriminatory markers for these sites. The main sources of particulate pollution for all sites were vehicle exhaust and biomass burning emissions, although diesel exhaust was an important source at the Highway site. In vitro results agreed with air pollutant levels, with higher oxidative potential from the winter samples. Estimated lung cancer cases were in the order PM10 > NO2 > PACs for all sites, and with less evident seasonal differences than in vitro results. In conclusion, our study presents novel seasonal data for many PACs together with air pollutants more traditionally included in air quality monitoring. Moreover, seasonal differences in air pollutant levels correlated with differences in toxicity in vitro.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Policíclicos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Compostos Policíclicos/análise , Suécia , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Compostos Orgânicos/análise , Estações do Ano , Medição de Risco
4.
Environ Res ; 231(Pt 2): 116186, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224945

RESUMO

Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/análise , Biocombustíveis , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Pulmão/química
5.
Environ Res ; 166: 16-24, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859369

RESUMO

This study investigated train air conditioning filters, interior ventilation systems, tunnel environments and platform air quality as factors affecting the concentrations of airborne particles inside trains and provides information on the exposure of passengers, train drivers and service staff to particles. Particle sampling was done inside the passenger cabin, the driver cabin and the service staff cabin during on-board measurement campaigns in 2016 and 2017. The results show that interior ventilation plays a key role in maintaining cleaner in-train air. Noticeable increases in PM10 and PM2.5 levels were observed for all of the measured cabins when the train was running in the newly opened tunnel. The increases occurred when the doors of the passenger cabin and the service staff cabin were open at underground stations. The door to the driver cabin, which remained closed for the entire measurement period, acted as a filter for coarse particles (PM2.5-10). The highest particle exposure occurred in the passenger cabin, followed by the service staff cabin, while the driver had the lowest exposure. The highest deposition dose occurs for the service staff and the lowest for commuters.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ocupacional/análise , Material Particulado/análise , Ferrovias , Humanos , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...