Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Natl Cancer Inst ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710487

RESUMO

BACKGROUND: Camonsertib is a selective oral inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase with demonstrated efficacy in tumors with DNA damage response gene deficiencies. On-target anemia is the main drug-related toxicity typically manifesting after the period of dose-limiting toxicity evaluation. Thus dose/schedule optimization requires extended follow-up to assess prolonged treatment effects. METHODS: Long-term safety/tolerability and antitumor efficacy of three camonsertib monotherapy dose levels/schedules were assessed in the TRESR study dose-optimization phase: 160 mg once daily (QD) 3 days on/4 off (160 3/4; the preliminary recommended phase II dose [RP2D]) and two step-down groups of 120 mg QD 3/4 (120 3/4) and 160 mg QD 3/4, 2 weeks on/1 off (160 3/4, 2/1w). Safety endpoints included incidence of treatment-related adverse events (TRAEs), dose modifications, and transfusions. Efficacy endpoints included overall response rate, clinical benefit rate, progression-free survival, and circulating-tumor-DNA (ctDNA)-based molecular response rate. RESULTS: The analysis included 119 patients: 160 3/4 (n = 67), 120 3/4 (n = 25), and 160 3/4, 2/1w (n = 27) treated up to 117.1 weeks as of the data cutoff. The risk of developing grade 3 anemia was significantly lower in the 160 3/4, 2/1w group compared with the preliminary RP2D group (HR = 0.23, 2-sided P = .02), translating to reduced transfusion and dose reduction requirements. The intermittent weekly schedule did not compromise antitumor activity. CONCLUSION: The 160 3/4, 2/1w dose was established as an optimized regimen for future camonsertib monotherapy studies offering significantly reduced anemia incidence without any compromise to efficacy.

2.
NPJ Precis Oncol ; 8(1): 82, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561473

RESUMO

Pancreatic acinar cell carcinoma (PACC) is a rare form of pancreatic cancer that commonly harbors targetable alterations, including activating fusions in the MAPK pathway and loss-of-function (LOF) alterations in DNA damage response/homologous recombination DNA repair-related genes. Here, we describe a patient with PACC harboring both somatic biallelic LOF of NBN and an activating NTRK1 fusion. Upon disease progression following 13 months of treatment with folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), genomic analysis of a metastatic liver biopsy revealed the emergence of a novel reversion mutation restoring the reading frame of NBN. To our knowledge, genomic reversion of NBN has not been previously reported as a resistance mechanism in any tumor type. The patient was treated with, but did not respond to, targeted treatment with a selective NTRK inhibitor. This case highlights the complex but highly actionable genomic landscape of PACC and underlines the value of genomic profiling of rare tumor types such as PACC.

3.
Mol Cancer Ther ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561019

RESUMO

Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR targeted treatments. Therefore, we designed a protein and genomic based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor tissue microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS) (30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared to ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n=12) vs Non-HomDel (n=37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNASEH2B HomDels in U-LMS was 76%, 93% and 71% respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.

4.
Nat Med ; 29(6): 1400-1411, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37277454

RESUMO

Predictive biomarkers of response are essential to effectively guide targeted cancer treatment. Ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) have been shown to be synthetic lethal with loss of function (LOF) of ataxia telangiectasia-mutated (ATM) kinase, and preclinical studies have identified ATRi-sensitizing alterations in other DNA damage response (DDR) genes. Here we report the results from module 1 of an ongoing phase 1 trial of the ATRi camonsertib (RP-3500) in 120 patients with advanced solid tumors harboring LOF alterations in DDR genes, predicted by chemogenomic CRISPR screens to sensitize tumors to ATRi. Primary objectives were to determine safety and propose a recommended phase 2 dose (RP2D). Secondary objectives were to assess preliminary anti-tumor activity, to characterize camonsertib pharmacokinetics and relationship with pharmacodynamic biomarkers and to evaluate methods for detecting ATRi-sensitizing biomarkers. Camonsertib was well tolerated; anemia was the most common drug-related toxicity (32% grade 3). Preliminary RP2D was 160 mg weekly on days 1-3. Overall clinical response, clinical benefit and molecular response rates across tumor and molecular subtypes in patients who received biologically effective doses of camonsertib (>100 mg d-1) were 13% (13/99), 43% (43/99) and 43% (27/63), respectively. Clinical benefit was highest in ovarian cancer, in tumors with biallelic LOF alterations and in patients with molecular responses. ClinicalTrials.gov registration: NCT04497116 .


Assuntos
Ataxia Telangiectasia , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Proteínas Quinases/farmacocinética , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
5.
J Mol Diagn ; 25(5): 295-310, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944408

RESUMO

Patient selection for synthetic lethal-based cancer therapy may be improved by assessment of gene-specific loss of heterozygosity (LOH) and biallelic loss of function (LOF). This report describes SyNthetic lethal Interactions for Precision Diagnostics (SNiPDx), a targeted next-generation sequencing (NGS) panel for detection of LOH and biallelic LOF alterations in 26 target genes focused on DNA damage response pathways, in tumor-only formalin-fixed, paraffin-embedded (FFPE) samples. NGS was performed across all exons of these 26 genes and encompassed a total of 7632 genome-wide single-nucleotide polymorphisms on genomic DNA from 80 FFPE solid tumor samples. The Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing algorithm was optimized to assess tumor purity and copy number based on heterozygous single-nucleotide polymorphisms. SNiPDx demonstrated high sensitivity (95%) and specificity (91%) for LOH detection compared with whole genome sequencing. Positive agreement with local NGS-based testing in the detection of genetic alterations was 95%. SNiPDx detected 93% of biallelic ATM LOF mutations, 100% of ATM single-nucleotide variants and small insertions/deletions, and 100% of all ATM LOH status events identified by orthogonal NGS-based testing. SNiPDx is a novel, clinically feasible test for analysis of allelic status in FFPE tumor samples, which demonstrated high accuracy when compared with other NGS-based approaches in clinical use.


Assuntos
Neoplasias , Humanos , Inclusão em Parafina , Neoplasias/genética , Neoplasias/diagnóstico , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Formaldeído , Reparo do DNA
7.
Nature ; 608(7923): 609-617, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948633

RESUMO

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
8.
J Mol Diagn ; 24(4): 351-364, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176488

RESUMO

Cholangiocarcinoma (CCA) is a heterogeneous biliary tract cancer with a poor prognosis. Approximately 30% to 50% of patients harbor actionable alterations, including FGFR2 rearrangements. Pemigatinib, a potent, selective fibroblast growth factor receptor (FGFR) FGFR1-3 inhibitor, is approved for previously treated, unresectable, locally advanced or metastatic CCA harboring FGFR2 fusions/rearrangements, as detected by a US Food and Drug Administration-approved test. The next-generation sequencing (NGS)-based FoundationOneCDx (F1CDx) was US Food and Drug Administration approved for detecting FGFR2 fusions or rearrangements. The precision and reproducibility of F1CDx in detecting FGFR2 rearrangements in CCA were examined. Analytical concordance between F1CDx and an externally validated RNA-based NGS (evNGS) test was performed. Identification of FGFR2 rearrangements in the screening population from the pivotal FIGHT-202 study (NCT02924376) was compared with F1CDx. The reproducibility and repeatability of F1CDx were 90% to 100%. Adjusted positive, negative, and overall percentage agreements were 87.1%, 99.6%, and 98.3%, respectively, between F1CDx and evNGS. Compared with evNGS, F1CDx had a positive predictive value of 96.2% and a negative predictive value of 98.5%. The positive percentage agreement, negative percentage agreement, overall percentage agreement, positive predictive value, and negative predictive value were 100% for F1CDx versus the FIbroblast Growth factor receptor inhibitor in oncology and Hematology Trial-202 (FIGHT-202) clinical trial assay. Of 6802 CCA samples interrogated, 9.2% had FGFR2 rearrangements. Cell lines expressing diverse FGFR2 fusions were sensitive to pemigatinib. F1CDx demonstrated sensitivity, reproducibility, and high concordance with clinical utility in identifying patients with FGFR2 rearrangements who may benefit from pemigatinib treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Genômica , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Reprodutibilidade dos Testes
10.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315813

RESUMO

Two features of eukaryotic RNA molecules that regulate their post-transcriptional fates are RNA secondary structure and RNA-binding protein (RBP) interaction sites. However, a comprehensive global overview of the dynamic nature of these sequence features during erythropoiesis has never been obtained. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approach to reveal the global landscape of RNA secondary structure and RBP-RNA interaction sites and the dynamics of these features during this important developmental process. We identify dynamic patterns of RNA secondary structure and RBP binding throughout the process and determine a set of corresponding protein-bound sequence motifs along with their dynamic structural and RBP-binding contexts. Finally, using these dynamically bound sequences, we identify a number of RBPs that have known and putative key functions in post-transcriptional regulation during mammalian erythropoiesis. In total, this global analysis reveals new post-transcriptional regulators of mammalian blood cell development.


Assuntos
Eritropoese/fisiologia , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Mamíferos , Conformação Molecular , Ligação Proteica , RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade
11.
Cancer Discov ; 11(2): 326-339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33218975

RESUMO

Pemigatinib, a selective FGFR1-3 inhibitor, has demonstrated antitumor activity in FIGHT-202, a phase II study in patients with cholangiocarcinoma harboring FGFR2 fusions/rearrangements, and has gained regulatory approval in the United States. Eligibility for FIGHT-202 was assessed using genomic profiling; here, these data were utilized to characterize the genomic landscape of cholangiocarcinoma and to uncover unique molecular features of patients harboring FGFR2 rearrangements. The results highlight the high percentage of patients with cholangiocarcinoma harboring potentially actionable genomic alterations and the diversity in gene partners that rearrange with FGFR2. Clinicogenomic analysis of pemigatinib-treated patients identified mechanisms of primary and acquired resistance. Genomic subsets of patients with other potentially actionable FGF/FGFR alterations were also identified. Our study provides a framework for molecularly guided clinical trials and underscores the importance of genomic profiling to enable a deeper understanding of the molecular basis for response and nonresponse to targeted therapy. SIGNIFICANCE: We utilized genomic profiling data from FIGHT-202 to gain insights into the genomic landscape of cholangiocarcinoma, to understand the molecular diversity of patients with FGFR2 fusions or rearrangements, and to interrogate the clinicogenomics of patients treated with pemigatinib. Our study highlights the utility of genomic profiling in clinical trials.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Morfolinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos , Feminino , Rearranjo Gênico , Humanos , Masculino
12.
J Neurol Surg B Skull Base ; 80(6): 562-567, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750041

RESUMO

Objective Posterior fossa meningiomas are surgically challenging tumors that are associated with high morbidity and mortality. We sought to investigate the anatomical distribution of clinically actionable mutations in posterior fossa meningioma to facilitate identifying patients amenable for systemic targeted therapy trials. Methods Targeted sequencing of clinically targetable AKT1 , SMO , and PIK3CA mutations was performed in 61 posterior fossa meningioma using Illumina NextSeq 500 to a target depth of >500 × . Samples were further interrogated for 53 cancer-relevant RNA fusions by the Archer FusionPlex panel to detect gene rearrangements. Results AKT 1 ( E17K ) mutations were detected in five cases (8.2%), four in the foramen magnum and one in the cerebellopontine angle. In contrast, none of the posterior fossa tumors harbored an SMO ( L412F ) or a PIK3CA ( E545K ) mutation. Notably, the majority of foramen magnum meningiomas (4/7, 57%) harbored an AKT1 mutation. In addition, common clinically targetable gene fusions were not detected in any of the cases. Conclusion A large subset of foramen magnum meningiomas harbor AKT1 E17K mutations and are therefore potentially amenable to targeted medical therapy. Genotyping of foramen magnum meningiomas may enable more therapeutic alternatives and guide their treatment decision process.

13.
Genome Biol ; 20(1): 189, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481099

RESUMO

BACKGROUND: Polyadenylation plays a key role in producing mature mRNAs in eukaryotes. It is widely believed that the poly(A)-binding proteins (PABs) uniformly bind to poly(A)-tailed mRNAs, regulating their stability and translational efficiency. RESULTS: We observe that the homozygous triple mutant of broadly expressed Arabidopsis thaliana PABs, AtPAB2, AtPAB4, and AtPAB8, is embryonic lethal. To understand the molecular basis, we characterize the RNA-binding landscape of these PABs. The AtPAB-binding efficiency varies over one order of magnitude among genes. To identify the sequences accounting for the variation, we perform poly(A)-seq that directly sequences the full-length poly(A) tails. More than 10% of poly(A) tails contain at least one guanosine (G); among them, the G-content varies from 0.8 to 28%. These guanosines frequently divide poly(A) tails into interspersed A-tracts and therefore cause the variation in the AtPAB-binding efficiency among genes. Ribo-seq and genome-wide RNA stability assays show that AtPAB-binding efficiency of a gene is positively correlated with translational efficiency rather than mRNA stability. Consistently, genes with stronger AtPAB binding exhibit a greater reduction in translational efficiency when AtPAB is depleted. CONCLUSIONS: Our study provides a new mechanism that translational efficiency of a gene can be regulated through the G-content-dependent PAB binding, paving the way for a better understanding of poly(A) tail-associated regulation of gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Composição de Bases , Genes de Plantas , Guanosina/análise , Proteína II de Ligação a Poli(A)/genética , Proteína II de Ligação a Poli(A)/metabolismo , Proteína II de Ligação a Poli(A)/fisiologia , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/fisiologia , Ligação Proteica
14.
Acta Neuropathol ; 136(5): 779-792, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30123936

RESUMO

Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples. Exome sequencing in an initial cohort (n = 24) detected frequent alterations in genes residing on the X chromosome, with somatic intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene as the most common alteration (n = 5, 20.8%), along with alterations of other known X-linked cancer-related genes KDM6A (n =2, 8.3%), DDX3X, RBM10 and STAG2 (n = 1, 4.1% each). DMD inactivation (by genomic deletion or loss of protein expression) was ultimately detected in 17/53 progressive meningioma patients (32%). Importantly, patients with tumors harboring DMD inactivation had a shorter overall survival (OS) than their wild-type counterparts [5.1 years (95% CI 1.3-9.0) vs. median not reached (95% CI 2.9-not reached, p = 0.006)]. Given the known poor prognostic association of TERT alterations in these tumors, we also assessed for these events, and found seven patients with TERT promoter mutations and three with TERT rearrangements in this cohort (n = 10, 18.8%), including a recurrent novel RETREG1-TERT rearrangement that was present in two patients. In a multivariate model, DMD inactivation (p = 0.033, HR = 2.6, 95% CI 1.0-6.6) and TERT alterations (p = 0.005, HR = 3.8, 95% CI 1.5-9.9) were mutually independent in predicting unfavorable outcomes. Thus, DMD alterations identify a subset of progressive/high-grade meningiomas with worse outcomes.


Assuntos
Distrofina/genética , Deleção de Genes , Neoplasias Meníngeas/genética , Meningioma/genética , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/ultraestrutura , Estudos de Coortes , Progressão da Doença , Distrofina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico por imagem , Meningioma/patologia , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , RNA Mensageiro/metabolismo , Cromatina Sexual/genética , Telomerase/genética , Telomerase/metabolismo , Sequenciamento do Exoma
15.
Mol Cell Biol ; 38(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866654

RESUMO

Formation of the mammalian hematopoietic system is under a complex set of developmental controls. Here, we report that mouse embryos lacking the KH domain poly(C) binding protein, Pcbp2, are selectively deficient in the definitive erythroid lineage. Compared to wild-type controls, transcript splicing analysis of the Pcbp2-/- embryonic liver reveals accentuated exclusion of an exon (exon 6) that encodes a highly conserved transcriptional control segment of the hematopoietic master regulator, Runx1. Embryos rendered homozygous for a Runx1 locus lacking this cassette exon (Runx1ΔE6) effectively phenocopy the loss of the definitive erythroid lineage in Pcbp2-/- embryos. These data support a model in which enhancement of Runx1 cassette exon 6 inclusion by Pcbp2 serves a critical role in development of hematopoietic progenitors and constitutes a critical step in the developmental pathway of the definitive erythropoietic lineage.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Eritropoese/genética , Eritropoese/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Células K562 , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Splicing de RNA , Deleção de Sequência
16.
Oncotarget ; 8(65): 109228-109237, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312603

RESUMO

BACKGROUND: Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. METHODS: We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients' progression and overall survival. RESULTS: Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 - 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). CONCLUSIONS: In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more aggressive meningiomas. Stratification for TERT alterations should be adopted in future clinical trials of progressive/higher-grade meningiomas.

17.
Cell Metab ; 24(2): 269-82, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508874

RESUMO

NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function.


Assuntos
Homeostase , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , NAD/metabolismo , Administração Oral , Envelhecimento/fisiologia , Animais , Disponibilidade Biológica , Metabolismo Energético , Glucose/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Força Muscular , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Necrose , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/metabolismo , Tamanho do Órgão , Condicionamento Físico Animal , Compostos de Piridínio , Transcrição Gênica
18.
Plant Biotechnol J ; 14(9): 1862-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507797

RESUMO

The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.


Assuntos
Genoma de Cloroplastos/genética , Engenharia Metabólica , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Esqualeno/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
Adv Exp Med Biol ; 907: 29-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27256381

RESUMO

RNA molecules of all types fold into complex secondary and tertiary structures that are important for their function and regulation. Structural and catalytic RNAs such as ribosomal RNA (rRNA) and transfer RNA (tRNA) are central players in protein synthesis, and only function through their proper folding into intricate three-dimensional structures. Studies of messenger RNA (mRNA) regulation have also revealed that structural elements embedded within these RNA species are important for the proper regulation of their total level in the transcriptome. More recently, the discovery of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has shed light on the importance of RNA structure to genome, transcriptome, and proteome regulation. Due to the relatively small number, high conservation, and importance of structural and catalytic RNAs to all life, much early work in RNA structure analysis mapped out a detailed view of these molecules. Computational and physical methods were used in concert with enzymatic and chemical structure probing to create high-resolution models of these fundamental biological molecules. However, the recent expansion in our knowledge of the importance of RNA structure to coding and regulatory RNAs has left the field in need of faster and scalable methods for high-throughput structural analysis. To address this, nuclease and chemical RNA structure probing methodologies have been adapted for genome-wide analysis. These methods have been deployed to globally characterize thousands of RNA structures in a single experiment. Here, we review these experimental methodologies for high-throughput RNA structure determination and discuss the insights gained from each approach.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Análise de Sequência de RNA/métodos , Animais , Arabidopsis/genética , Pareamento de Bases , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Drosophila melanogaster/genética , Células-Tronco Embrionárias/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , RNA/biossíntese , RNA/genética , Dobramento de RNA , RNA Fúngico/genética , RNA de Helmintos/química , Ribonucleases/metabolismo , Especificidade por Substrato
20.
BMC Bioinformatics ; 17(1): 215, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188311

RESUMO

BACKGROUND: RNA molecules fold into complex three-dimensional shapes, guided by the pattern of hydrogen bonding between nucleotides. This pattern of base pairing, known as RNA secondary structure, is critical to their cellular function. Recently several diverse methods have been developed to assay RNA secondary structure on a transcriptome-wide scale using high-throughput sequencing. Each approach has its own strengths and caveats, however there is no widely available tool for visualizing and comparing the results from these varied methods. METHODS: To address this, we have developed Structure Surfer, a database and visualization tool for inspecting RNA secondary structure in six transcriptome-wide data sets from human and mouse ( http://tesla.pcbi.upenn.edu/strucuturesurfer/ ). The data sets were generated using four different high-throughput sequencing based methods. Each one was analyzed with a scoring pipeline specific to its experimental design. Users of Structure Surfer have the ability to query individual loci as well as detect trends across multiple sites. RESULTS: Here, we describe the included data sets and their differences. We illustrate the database's function by examining known structural elements and we explore example use cases in which combined data is used to detect structural trends. CONCLUSIONS: In total, Structure Surfer provides an easy-to-use database and visualization interface for allowing users to interrogate the currently available transcriptome-wide RNA secondary structure information for mammals.


Assuntos
Bases de Dados Factuais , RNA/química , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Conformação de Ácido Nucleico , RNA/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...