Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Appl ; 20(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38618629

RESUMO

III-V semiconductor quantum dots (QDs) are near-ideal and versatile single-photon sources. Because of the capacity for monolithic integration with photonic structures as well as optoelectronic and optomechanical systems, they are proving useful in an increasingly broad application space. Here, we develop monolithic circular dielectric gratings on bulk substrates - as opposed to suspended or wafer-bonded substrates - for greatly improved photon collection from InAs quantum dots. The structures utilize a unique two-tiered distributed Bragg reflector (DBR) structure for vertical electric field confinement over a broad angular range. Opposing "openings" in the cavities induce strongly polarized QD luminescence without harming collection efficiencies. We describe how measured enhancements depend on the choice of collection optics. This is important to consider when evaluating the performance of any photonic structure that concentrates farfield emission intensity. Our cavity designs are useful for integrating QDs with other quantum systems that require bulk substrates, such as surface acoustic wave phonons.

2.
Nano Lett ; 21(3): 1434-1439, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33508204

RESUMO

A variety of quantum degrees of freedom, e.g., spins, valleys, and localized emitters, in atomically thin van der Waals materials have been proposed for quantum information applications, and they inevitably couple to phonons. Here, we directly measure the intrinsic optical phonon decoherence in monolayer and bulk MoS2 by observing the temporal evolution of the spectral interference of Stokes photons generated by pairs of laser pulses. We find that a prominent optical phonon mode E2g exhibits a room-temperature dephasing time of ∼7 ps in both the monolayer and bulk. This dephasing time extends to ∼20 ps in the bulk crystal at ∼15 K, which is longer than previously thought possible. First-principles calculations suggest that optical phonons decay via two types of three-phonon processes, in which a pair of acoustic phonons with opposite momentum are generated.

3.
Opt Express ; 28(11): 16057-16072, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549437

RESUMO

W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs). Here we optimize the implant energy, fluence and anneal conditions to maximize the photoluminescence intensity for W centers implanted in silicon-on-insulator, a substrate suitable for waveguide-integrated devices. After optimization, we observe near two orders of magnitude improvement in photoluminescence intensity relative to the conditions with the stopping range of the implanted ions at the center of the silicon device layer. The previously demonstrated waveguide-integrated LED used implant conditions with the stopping range at the center of this layer. We further show that such light sources can be manufactured at the 300-mm scale by demonstrating photoluminescence of similar intensity from 300 mm silicon-on-insulator wafers. The luminescence uniformity across the entire wafer is within the measurement error.

4.
Nature ; 567(7746): 71-75, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804527

RESUMO

Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moiré superlattice3. It is widely recognized that the moiré superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5-7; however, the influence of the moiré superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moiré potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications.

5.
Phys Rev Lett ; 121(5): 057403, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118275

RESUMO

In atomically thin two-dimensional semiconductors such as transition metal dichalcogenides (TMDs), controlling the density and type of defects promises to be an effective approach for engineering light-matter interactions. We demonstrate that electron-beam irradiation is a simple tool for selectively introducing defect-bound exciton states associated with chalcogen vacancies in TMDs. Our first-principles calculations and time-resolved spectroscopy measurements of monolayer WSe_{2} reveal that these defect-bound excitons exhibit exceptional optical properties including a recombination lifetime approaching 200 ns and a valley lifetime longer than 1 µs. The ability to engineer the crystal lattice through electron irradiation provides a new approach for tailoring the optical response of TMDs for photonics, quantum optics, and valleytronics applications.

6.
J Phys Chem Lett ; 8(5): 1099-1104, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28212035

RESUMO

The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

7.
Appl Phys Lett ; 111(14)2017.
Artigo em Inglês | MEDLINE | ID: mdl-36452265

RESUMO

We demonstrate cryogenic, electrically injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 µm. The active region of the LED consists of W centers implanted in the intrinsic region of a p-i-n diode. The LEDs are integrated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device.

8.
Optica ; 3(12): 1397-1403, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29170754

RESUMO

The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-field dependent delay of the amplitude and phase modulation. Appreciable amplitude modulation depth and nonlinear phase shift up to ~0.09×π radians (16°) are demonstrated, providing new possibilities for quadrature modulation at faint photon levels with several independent control parameters, including photon number, modulation frequency, detuning, and externally applied fields.

9.
Opt Express ; 21(23): 28617-27, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514373

RESUMO

Multidimensional Coherent Optical Photocurrent Spectroscopy (MD-COPS) is implemented using unstabilized interferometers. Photocurrent from a semiconductor sample is generated using a sequence of four excitation pulses in a collinear geometry. Each pulse is frequency shifted by a unique radio frequency through acousto-optical modulation; the Four-Wave Mixing (FWM) signal is then selected in the frequency domain. The interference of an auxiliary continuous wave laser, which is sent through the same interferometers as the excitation pulses, is used to synthesize reference frequencies for lock-in detection of the photocurrent FWM signal. This scheme enables the partial compensation of mechanical fluctuations in the setup, achieving sufficient phase stability without the need for active stabilization. The method intrinsically provides both the real and imaginary parts of the FWM signal as a function of inter-pulse delays. This signal is subsequently Fourier transformed to create a multi-dimensional spectrum. Measurements made on the excitonic resonance in a double InGaAs quantum well embedded in a p-i-n diode demonstrate the technique.

10.
Opt Express ; 18(13): 13385-95, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588468

RESUMO

We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results.


Assuntos
Simulação por Computador , Lasers Semicondutores , Óptica e Fotônica/instrumentação , Pontos Quânticos , Desenho de Equipamento , Modelos Teóricos , Óptica e Fotônica/métodos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...