Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 18(1): 111-118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691336

RESUMO

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5' terminal oligopyrimidine (5'TOP) mRNAs as well as other mRNAs and binds to both the 5'TOP motif and the 3'-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.


Assuntos
Motivos de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Humanos , Isótopos de Nitrogênio , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a RNA
2.
Methods Enzymol ; 685: 433-459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245911

RESUMO

Allosteric regulation of protein function is ubiquitous in biology. Allostery originates from ligand-mediated alterations in polypeptide structure and/or dynamics, which produce a cooperative kinetic or thermodynamic response to changing ligand concentrations. Establishing a mechanistic description of individual allosteric events requires both mapping the relevant changes in protein structure and quantifying the rates of differential conformational dynamics in the absence and presence of effectors. In this chapter, we describe three biochemical approaches to understand the dynamic and structural signatures of protein allostery using the well-established cooperative enzyme glucokinase as a case study. The combined application of pulsed proteolysis, biomolecular nuclear magnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry offers complementary information that can used to establish molecular models for allosteric proteins, especially when differential protein dynamics are involved.


Assuntos
Glucoquinase , Proteínas , Humanos , Glucoquinase/metabolismo , Ligantes , Proteínas/química , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Regulação Alostérica , Conformação Proteica
3.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214987

RESUMO

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5' s terminal oligopyrimidine (5'TOP) mRNAs as well as other mRNAs and binds to both the 5'TOP motif and the 3'-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.

4.
Case Rep Gastroenterol ; 16(2): 435-440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949232

RESUMO

Pill-induced esophagitis due to calcium supplements is extremely uncommon. We present a 60-year-old female patient with pill-induced esophageal perforation complicated by mediastinal abscess and esophago-pleural fistula following ingestion of a single over-the-counter "bone supplement" tablet containing mainly calcium.

5.
ACR Open Rheumatol ; 4(3): 259, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34913614
6.
J Mol Biol ; 434(2): 167394, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896113

RESUMO

Excessive synthesis of type I collagen is a hallmark of fibrotic diseases. Binding of La-related protein 6 (LARP6) to the 5' stem-loop (5'SL) of collagen mRNAs regulates their translation leading to an unnaturally elevated rate of collagen biosynthesis in fibrosis. Previous work suggested that LARP6 needs two domains to form stable complex with 5'SL RNA, the La domain and the juxtaposed RNA recognition motif (RRM), jointly called the La-module. Here we describe that La domain of LARP6 is necessary and sufficient for recognition of 5'SL in RNA sequence specific manner. A three-amino-acid motif located in the flexible loop connecting the second α-helix to the ß-sheet of the La domain, called the RNK-motif, is critical for binding. Mutation of any of these three amino acids abolishes the binding of the La domain to 5'SL. The major site of crosslinking of LARP6 to 5'SL RNA was mapped to this motif, as well. The RNK-motif is not found in other LARPs, which cannot bind 5'SL. Presence of RRM increases the stability of complex between La domain and 5'SL RNA and RRM domain does not make extensive contacts with 5'SL RNA. We propose a model in which the initial recognition of 5'SL by LARP6 is mediated by the RNK epitope and further stabilized by the RRM domain. This discovery suggests that the interaction between LARP6 and collagen mRNAs can be blocked by small molecules that target the RNK epitope and will help rational design of the LARP6 binding inhibitors as specific antifibrotic drugs.


Assuntos
Autoantígenos/química , Colágeno Tipo I/química , Fibrose/metabolismo , RNA Mensageiro/química , Ribonucleoproteínas/química , Motivos de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno , Colágeno Tipo I/biossíntese , Humanos , Conformação de Ácido Nucleico , Preparações Farmacêuticas , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Antígeno SS-B
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969859

RESUMO

Several publications describing high-resolution structures of amyloid-ß (Aß) and other fibrils have demonstrated that magic-angle spinning (MAS) NMR spectroscopy is an ideal tool for studying amyloids at atomic resolution. Nonetheless, MAS NMR suffers from low sensitivity, requiring relatively large amounts of samples and extensive signal acquisition periods, which in turn limits the questions that can be addressed by atomic-level spectroscopic studies. Here, we show that these drawbacks are removed by utilizing two relatively recent additions to the repertoire of MAS NMR experiments-namely, 1H detection and dynamic nuclear polarization (DNP). We show resolved and sensitive two-dimensional (2D) and three-dimensional (3D) correlations obtained on 13C,15N-enriched, and fully protonated samples of M0Aß1-42 fibrils by high-field 1H-detected NMR at 23.4 T and 18.8 T, and 13C-detected DNP MAS NMR at 18.8 T. These spectra enable nearly complete resonance assignment of the core of M0Aß1-42 (K16-A42) using submilligram sample quantities, as well as the detection of numerous unambiguous internuclear proximities defining both the structure of the core and the arrangement of the different monomers. An estimate of the sensitivity of the two approaches indicates that the DNP experiments are currently ∼6.5 times more sensitive than 1H detection. These results suggest that 1H detection and DNP may be the spectroscopic approaches of choice for future studies of Aß and other amyloid systems.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Conformação Proteica , Temperatura
8.
J Am Chem Soc ; 143(43): 18073-18090, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34699194

RESUMO

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer) is an abundant innate immune protein that contributes to the host metal-withholding response. Its ability to sequester transition metal nutrients from microbial pathogens depends on a complex interplay of Ca(II) binding and self-association, which converts the αß heterodimeric apo protein into a Ca(II)-bound (αß)2 heterotetramer that displays enhanced transition metal affinities, antimicrobial activity, and protease stability. A paucity of structural data on the αß heterodimer has hampered molecular understanding of how Ca(II) binding enables CP to exert its metal-sequestering innate immune function. We report solution NMR data that reveal how Ca(II) binding affects the structure and dynamics of the CP αß heterodimer. These studies provide a structural model in which the apo αß heterodimer undergoes conformational exchange and switches between two states, a tetramerization-incompetent or "inactive" state and a tetramerization-competent or "active" state. Ca(II) binding to the EF-hands of the αß heterodimer causes the active state to predominate, resulting in self-association and formation of the (αß)2 heterotetramer. Moreover, Ca(II) binding causes local and allosteric ordering of the His3Asp and His6 metal-binding sites. Ca(II) binding to the noncanonical EF-hand of S100A9 positions (A9)D30 and organizes the His3Asp site. Remarkably, Ca(II) binding causes allosteric effects in the C-terminal region of helix αIV of S100A9, which stabilize the α-helicity at positions H91 and H95 and thereby organize the functionally versatile His6 site. Collectively, this study illuminates the molecular basis for how CP responds to high extracellular Ca(II) concentrations, which enables its metal-sequestering host-defense function.


Assuntos
Cálcio/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Multimerização Proteica/efeitos dos fármacos , Elementos de Transição/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Histidina/química , Humanos , Complexo Antígeno L1 Leucocitário/genética , Metais Pesados/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Multimerização Proteica/genética
9.
Methods Mol Biol ; 2302: 201-217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877629

RESUMO

We describe approaches for the preparation of membrane proteins in detergent micelles and lipid bilayers for solution and magic angle spinning NMR studies, respectively, as exemplified by the human voltage dependent anion channel 1 (hVDAC1). Here, we report protocols for the preparation of homogenous samples of recombinant hVDAC1 in detergent micelles and lipid two-dimensional crystals yielding high resolution NMR spectra. Procedures are described for the recombinant production of stable-isotope labeled hVDAC1 in E. coli, the isolation of hVDAC1 from inclusion bodies and the refolding into detergent micelles, as well as the reconstitution of hVDAC1 into lipids to form 2D crystals.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Bicamadas Lipídicas/química , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Escherichia coli/genética , Humanos , Corpos de Inclusão/química , Marcação por Isótopo , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transformação Bacteriana , Canal de Ânion 1 Dependente de Voltagem/genética
10.
Nat Commun ; 9(1): 4517, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375379

RESUMO

All amyloid fibrils contain a cross-ß fold. How this structure differs in fibrils formed from proteins associated with different diseases remains unclear. Here, we combine cryo-EM and MAS-NMR to determine the structure of an amyloid fibril formed in vitro from ß2-microglobulin (ß2m), the culprit protein of dialysis-related amyloidosis. The fibril is composed of two identical protofilaments assembled from subunits that do not share ß2m's native tertiary fold, but are formed from similar ß-strands. The fibrils share motifs with other amyloid fibrils, but also contain unique features including π-stacking interactions perpendicular to the fibril axis and an intramolecular disulfide that stabilises the subunit fold. We also describe a structural model for a second fibril morphology and show that it is built from the same subunit fold. The results provide insights into the mechanisms of fibril formation and the commonalities and differences within the amyloid fold in different protein sequences.


Assuntos
Amiloide/ultraestrutura , Amiloidose/metabolismo , Microglobulina beta-2/ultraestrutura , Amiloide/metabolismo , Amiloidose/etiologia , Microscopia Crioeletrônica , Humanos , Espectroscopia de Ressonância Magnética , Dobramento de Proteína , Estrutura Terciária de Proteína , Diálise Renal/efeitos adversos , Microglobulina beta-2/metabolismo
11.
J Phys Chem B ; 121(48): 10804-10817, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043804

RESUMO

Proton-assisted recoupling (PAR) is examined by exploring optimal experimental conditions and magnetization transfer rates in a variety of biologically relevant nuclear spin-systems, including simple amino acids, model peptides, and two proteins-nanocrystalline protein G (GB1), and importantly amyloid beta 1-42 (M0Aß1-42) fibrils. A selective PAR protocol, SUBPAR (setting up better proton assisted recoupling), is described to observe magnetization transfer in one-dimensional spectra, which minimizes experiment time (in comparison to two-dimensional experiments) and thereby enables an efficient assessment of optimal PAR conditions for a desired magnetization transfer. In the case of the peptide spin systems, experimental and simulated PAR data sets are compared on a semiquantitative level, thereby elucidating the interactions influencing PAR magnetization transfer and their manifestations in different spin transfer networks. Using the optimum Rabi frequencies determined by SUBPAR, PAR magnetization transfer trajectories (or buildup curves) were recorded and compared to simulated results for short peptides. PAR buildup curves were also recorded for M0Aß1-42 and examined conjointly with a recent structural model. The majority of salient cross-peak intensities observed in the M0Aß1-42 PAR spectra are well-modeled with a simple biexponential equation, although the fitting parameters do not show any strong correlation to internuclear distances. Nevertheless, these parameters provide a wealth of invaluable semiquantitative structural constraints for the M0Aß1-42. The results presented here offer a complete protocol for recording PAR 13C-13C correlation spectra with high-efficiency and using the resulting information in protein structural studies.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Peptídeos/química , Prótons , Receptores de GABA-B/química
12.
Chembiochem ; 18(23): 2340-2350, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28950050

RESUMO

The impact of the incorporation of a non-natural amino acid (NNAA) on protein structure, dynamics, and ligand binding has not been studied rigorously so far. NNAAs are regularly used to modify proteins post-translationally in vivo and in vitro through click chemistry. Herein, structural characterisation of the impact of the incorporation of azidohomoalanine (AZH) into the model protein domain PDZ3 is examined by means of NMR spectroscopy and X-ray crystallography. The structure and dynamics of the apo state of AZH-modified PDZ3 remain mostly unperturbed. Furthermore, the binding of two PDZ3 binding peptides are unchanged upon incorporation of AZH. The interface of the AZH-modified PDZ3 and an azulene-linked peptide for vibrational energy transfer studies has been mapped by means of chemical shift perturbations and NOEs between the unlabelled azulene-linked peptide and the isotopically labelled protein. Co-crystallisation and soaking failed for the peptide-bound holo complex. NMR spectroscopy, however, allowed determination of the protein-ligand interface. Although the incorporation of AZH was minimally invasive for PDZ3, structural analysis of NNAA-modified proteins through the methodology presented herein should be performed to ensure structural integrity of the studied target.


Assuntos
Alanina/análogos & derivados , Proteína 4 Homóloga a Disks-Large/química , Ligantes , Alanina/química , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Mutagênese , Domínios PDZ/genética , Domínios PDZ/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
13.
Biochemistry ; 56(36): 4850-4859, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28792214

RESUMO

A mechanistic understanding of Aß aggregation and high-resolution structures of Aß fibrils and oligomers are vital to elucidating relevant details of neurodegeneration in Alzheimer's disease, which will facilitate the rational design of diagnostic and therapeutic protocols. The most detailed and reproducible insights into structure and kinetics have been achieved using Aß peptides produced by recombinant expression, which results in an additional methionine at the N-terminus. While the length of the C-terminus is well established to have a profound impact on the peptide's aggregation propensity, structure, and neurotoxicity, the impact of the N-terminal methionine on the aggregation pathways and structure is unclear. For this reason, we have developed a protocol to produce recombinant Aß1-42, sans the N-terminal methionine, using an N-terminal small ubiquitin-like modifier-Aß1-42 fusion protein in reasonable yield, with which we compared aggregation kinetics with AßM01-42 containing the additional methionine residue. The data revealed that Aß1-42 and AßM01-42 aggregate with similar rates and by the same mechanism, in which the generation of new aggregates is dominated by secondary nucleation of monomers on the surface of fibrils. We also recorded magic angle spinning nuclear magnetic resonance spectra that demonstrated that excellent spectral resolution is maintained with both AßM01-42 and Aß1-42 and that the chemical shifts are virtually identical in dipolar recoupling experiments that provide information about rigid residues. Collectively, these results indicate that the structure of the fibril core is unaffected by N-terminal methionine. This is consistent with the recent structures of AßM01-42 in which M0 is located at the terminus of a disordered 14-amino acid N-terminal tail.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Análise Espectral/métodos
14.
J Cardiovasc Magn Reson ; 19(1): 48, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28662717

RESUMO

BACKGROUND: For evaluation of the pulmonary arteries in patients suspected of pulmonary embolism, CT angiography (CTA) is the first-line imaging test with contrast-enhanced MR angiography (CEMRA) a potential alternative. Disadvantages of CTA include exposure to ionizing radiation and an iodinated contrast agent, while CEMRA is sensitive to respiratory motion and requires a gadolinium-based contrast agent. The primary goal of our technical feasibility study was to evaluate pulmonary arterial conspicuity using breath-hold and free-breathing implementations of a recently-developed nonenhanced approach, single-shot radial quiescent-interval slice-selective (QISS) MRA. METHODS: Breath-hold and free-breathing, navigator-gated versions of radial QISS MRA were evaluated at 1.5 Tesla in three healthy subjects and 11 patients without pulmonary embolism or arterial occlusion by CTA. Images were scored by three readers for conspicuity of the pulmonary arteries through the level of the segmental branches. In addition, one patient with pulmonary embolism was imaged. RESULTS: Scan time for a 54-slice acquisition spanning the pulmonary arteries was less than 2 minutes for breath-hold QISS, and less than 3.4 min using free-breathing QISS. Pulmonary artery branches through the segmental level were conspicuous with either approach. Free-breathing scans showed only mild blurring compared with breath-hold scans. For both readers, less than 1% of pulmonary arterial segments were rated as "not seen" for breath-hold and navigator-gated QISS, respectively. In subjects with atrial fibrillation, single-shot radial QISS consistently depicted the pulmonary artery branches, whereas navigator-gated 3D balanced steady-state free precession showed motion artifacts. In one patient with pulmonary embolism, radial QISS demonstrated central pulmonary emboli comparably to CEMRA and CTA. The thrombi were highly conspicuous on radial QISS images, but appeared subtle and were not prospectively identified on scout images acquired using a single-shot bSSFP acquisition. CONCLUSIONS: In this technical feasibility study, both breath-hold and free-breathing single-shot radial QISS MRA enabled rapid, consistent demonstration of the pulmonary arteries through the level of the segmental branches, with only minimal artifacts from respiratory motion and cardiac arrhythmias. Based on these promising initial results, further evaluation in patients with suspected pulmonary embolism appears warranted.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Artéria Pulmonar/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Idoso , Artefatos , Suspensão da Respiração , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
J Am Chem Soc ; 139(19): 6518-6521, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28447786

RESUMO

We demonstrate a novel 3D NNC magic angle spinning NMR experiment that generates 15N-15N internuclear contacts in protein systems using an optimized 15N-15N proton assisted recoupling (PAR) mixing period and a 13C dimension for improved resolution. The optimized PAR condition permits the acquisition of high signal-to-noise 3D data that enables backbone chemical shift assignments using a strategy that is complementary to current schemes. The spectra can also provide distance constraints. The utility of the experiment is demonstrated on an M0Aß1-42 fibril sample that yields high-quality data that is readily assigned and interpreted. The 3D NNC experiment therefore provides a powerful platform for solid-state protein studies and is broadly applicable to a variety of systems and experimental conditions.


Assuntos
Peptídeos beta-Amiloides/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Isótopos de Nitrogênio
16.
Phys Chem Chem Phys ; 18(39): 27205-27218, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27545112

RESUMO

We investigate complexes of two paramagnetic metal ions Gd3+ and Mn2+ to serve as polarizing agents for solid-state dynamic nuclear polarization (DNP) of 1H, 13C, and 15N at magnetic fields of 5, 9.4, and 14.1 T. Both ions are half-integer high-spin systems with a zero-field splitting and therefore exhibit a broadening of the mS = -1/2 ↔ +1/2 central transition which scales inversely with the external field strength. We investigate experimentally the influence of the chelator molecule, strong hyperfine coupling to the metal nucleus, and deuteration of the bulk matrix on DNP properties. At small Gd-DOTA concentrations the narrow central transition allows us to polarize nuclei with small gyromagnetic ratio such as 13C and even 15N via the solid effect. We demonstrate that enhancements observed are limited by the available microwave power and that large enhancement factors of >100 (for 1H) and on the order of 1000 (for 13C) can be achieved in the saturation limit even at 80 K. At larger Gd(iii) concentrations (≥10 mM) where dipolar couplings between two neighboring Gd3+ complexes become substantial a transition towards cross effect as dominating DNP mechanism is observed. Furthermore, the slow spin-diffusion between 13C and 15N, respectively, allows for temporally resolved observation of enhanced polarization spreading from nuclei close to the paramagnetic ion towards nuclei further removed. Subsequently, we present preliminary DNP experiments on ubiquitin by site-directed spin-labeling with Gd3+ chelator tags. The results hold promise towards applications of such paramagnetically labeled proteins for DNP applications in biophysical chemistry and/or structural biology.


Assuntos
Quelantes/química , Compostos Organometálicos/química , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Gadolínio/química , Espectroscopia de Ressonância Magnética , Manganês/química , Teoria Quântica
17.
J Am Chem Soc ; 138(30): 9663-74, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27355699

RESUMO

Amyloid-ß (Aß) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-ß amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aß are Aß1-40 and Aß1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aß42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AßM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aß42 molecules, each containing four ß-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aß42 aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Agregados Proteicos , Estrutura Secundária de Proteína
18.
Methods Mol Biol ; 1439: 207-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27316998

RESUMO

Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic ß-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Regiões Promotoras Genéticas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , gama-Globinas/genética , Animais , Linhagem Celular , Vaga-Lumes/genética , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/genética , Renilla/genética , Transfecção/métodos
19.
Biochim Biophys Acta ; 1864(9): 1083-1092, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240304

RESUMO

The recovery of secondary structure in disordered, disulfide-reduced hen egg white lysozyme (HEWL) upon interaction with lipid vesicles was studied using circular dichroism (CD), fluorescence and infrared (IR) spectroscopic techniques. Lipid vesicles having negative head groups, such as DMPG, interact with reduced HEWL to induce formation of more helical structure than in native HEWL, but no stable tertiary structure was evident. Changes in tertiary structure, as evidenced by local environment of the tryptophan residues, were monitored by fluorescence. Spectra for oxidized HEWL, reduced HEWL and mutants with no or just one disulfide bond developed variable degrees of increased helicity when added to negatively charged lipid vesicles, mostly depending on packing of tails. When mixed with zwitterionic lipid vesicles, reduced HEWL developed ß-sheet structure with no change in helicity, indicating an altered interaction mechanism. Stopped flow CD and fluorescence dynamics, were fit to multi-exponential forms, consistent with refolding to metastable intermediates of increasing helicity for HEWL interacting with lipid vesicles. Formation of an intermediate after rapid interaction of the lipid vesicles and the protein is supported by the correlation of faster steps in CD and fluorescence kinetics, and largely appears driven by electrostatic interaction. In subsequent slower steps, the partially refolded intermediate further alters structure, gaining helicity and modifying tryptophan packing, as driven by hydrophobic interactions.


Assuntos
Lipossomos/química , Muramidase/química , Fosfatidilgliceróis/química , Animais , Galinhas , Interações Hidrofóbicas e Hidrofílicas , Cinética , Muramidase/isolamento & purificação , Mutação , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Redobramento de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
20.
Radiol Clin North Am ; 53(6): 1225-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26526435

RESUMO

Small bowel obstruction and large bowel obstruction account for approximately 20% of cases of acute abdominal surgical conditions. The role of the radiologist is to answer several key questions: Is obstruction present? What is the level of the obstruction? What is the cause of the obstruction? What is the severity of the obstruction? Is the obstruction simple or closed loop? Is strangulation, ischemia, or perforation present? In this presentation, the radiologic approach to and imaging findings of patients with known or suspected bowel obstruction are presented.


Assuntos
Obstrução Intestinal/diagnóstico por imagem , Tomografia Computadorizada Multidetectores , Doença Aguda , Humanos , Intestinos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...