Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747710

RESUMO

Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.

2.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546753

RESUMO

Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE's data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.

3.
Curr Biol ; 33(11): 2340-2349.e3, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37236180

RESUMO

Neuronal wiring diagrams reconstructed by electron microscopy1,2,3,4,5 pose new questions about the organization of nervous systems following the time-honored tradition of cross-species comparisons.6,7 The C. elegans connectome has been conceptualized as a sensorimotor circuit that is approximately feedforward,8,9,10,11 starting from sensory neurons proceeding to interneurons and ending with motor neurons. Overrepresentation of a 3-cell motif often known as the "feedforward loop" has provided further evidence for feedforwardness.10,12 Here, we contrast with another sensorimotor wiring diagram that was recently reconstructed from a larval zebrafish brainstem.13 We show that the 3-cycle, another 3-cell motif, is highly overrepresented in the oculomotor module of this wiring diagram. This is a first for any neuronal wiring diagram reconstructed by electron microscopy, whether invertebrate12,14 or mammalian.15,16,17 The 3-cycle of cells is "aligned" with a 3-cycle of neuronal groups in a stochastic block model (SBM)18 of the oculomotor module. However, the cellular cycles exhibit more specificity than can be explained by the group cycles-recurrence to the same neuron is surprisingly common. Cyclic structure could be relevant for theories of oculomotor function that depend on recurrent connectivity. The cyclic structure coexists with the classic vestibulo-ocular reflex arc for horizontal eye movements,19 and could be relevant for recurrent network models of temporal integration by the oculomotor system.20,21.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Caenorhabditis elegans/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Movimentos Oculares , Mamíferos
4.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993282

RESUMO

We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.

5.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36993398

RESUMO

To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feedback connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron's tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron's receptive field is located). We show that the feature, but not the spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the "like-to-like" connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and function.

6.
Front Neural Circuits ; 16: 977700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506593

RESUMO

Three-dimensional electron microscopy images of brain tissue and their dense segmentations are now petascale and growing. These volumes require the mass production of dense segmentation-derived neuron skeletons, multi-resolution meshes, image hierarchies (for both modalities) for visualization and analysis, and tools to manage the large amount of data. However, open tools for large-scale meshing, skeletonization, and data management have been missing. Igneous is a Python-based distributed computing framework that enables economical meshing, skeletonization, image hierarchy creation, and data management using cloud or cluster computing that has been proven to scale horizontally. We sketch Igneous's computing framework, show how to use it, and characterize its performance and data storage.


Assuntos
Imageamento Tridimensional , Neurônios , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Armazenamento e Recuperação da Informação , Processamento de Imagem Assistida por Computador/métodos
7.
Proc Natl Acad Sci U S A ; 119(48): e2202580119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417438

RESUMO

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.


Assuntos
Neocórtex , Células Precursoras de Oligodendrócitos , Animais , Camundongos , Axônios/metabolismo , Oligodendroglia/metabolismo , Neurônios/metabolismo
8.
Elife ; 112022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382887

RESUMO

Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (layer 2/3 [L2/3] pyramidal cells in mouse primary visual cortex), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects (250 × 140 × 90 µm3 volume). We used the map to identify constraints on the learning algorithms employed by the cortex. Previous cortical studies modeled a continuum of synapse sizes by a log-normal distribution. A continuum is consistent with most neural network models of learning, in which synaptic strength is a continuously graded analog variable. Here, we show that synapse size, when restricted to synapses between L2/3 pyramidal cells, is well modeled by the sum of a binary variable and an analog variable drawn from a log-normal distribution. Two synapses sharing the same presynaptic and postsynaptic cells are known to be correlated in size. We show that the binary variables of the two synapses are highly correlated, while the analog variables are not. Binary variation could be the outcome of a Hebbian or other synaptic plasticity rule depending on activity signals that are relatively uniform across neuronal arbors, while analog variation may be dominated by other influences such as spontaneous dynamical fluctuations. We discuss the implications for the longstanding hypothesis that activity-dependent plasticity switches synapses between bistable states.


Assuntos
Células Piramidais , Sinapses , Camundongos , Animais , Células Piramidais/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Microscopia Eletrônica
9.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216674

RESUMO

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologia
10.
Nat Methods ; 19(1): 119-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949809

RESUMO

Due to advances in automated image acquisition and analysis, whole-brain connectomes with 100,000 or more neurons are on the horizon. Proofreading of whole-brain automated reconstructions will require many person-years of effort, due to the huge volumes of data involved. Here we present FlyWire, an online community for proofreading neural circuits in a Drosophila melanogaster brain and explain how its computational and social structures are organized to scale up to whole-brain connectomics. Browser-based three-dimensional interactive segmentation by collaborative editing of a spatially chunked supervoxel graph makes it possible to distribute proofreading to individuals located virtually anywhere in the world. Information in the edit history is programmatically accessible for a variety of uses such as estimating proofreading accuracy or building incentive systems. An open community accelerates proofreading by recruiting more participants and accelerates scientific discovery by requiring information sharing. We demonstrate how FlyWire enables circuit analysis by reconstructing and analyzing the connectome of mechanosensory neurons.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Drosophila melanogaster/fisiologia , Imageamento Tridimensional/métodos , Software , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Gráficos por Computador , Visualização de Dados , Drosophila melanogaster/citologia , Neurônios/citologia , Neurônios/fisiologia
11.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851292

RESUMO

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.


Assuntos
Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Animais , Feminino , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
13.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225998

RESUMO

Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the Drosophila female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e. This reveals strong recurrent connectivity between, in particular, pC1d/e neurons and a specific subset of Fruitless+ neurons called aIPg. We additionally find that pC1d/e activation drives long-lasting persistent neural activity in brain areas and cells overlapping with the pC1d/e neural network, including both Doublesex+ and Fruitless+ neurons. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.


Long-term mental states such as arousal and mood variations rely on persistent changes in the activity of certain neural circuits which have been difficult to identify. For instance, in male fruit flies, the activation of a particular circuit containing 'P1 neurons' can escalate aggressive and mating behaviors. However, less is known about the neural networks that underlie arousal in female flies. A group of female-specific, 'pC1 neurons' similar to P1 neurons could play this role, but it was unclear whether it could drive lasting changes in female fly behavior. To investigate this question, Deutsch et al. stimulated or shut down pC1 circuits in female flies, and then recorded the insects' interactions with male flies. Stimulation was accomplished using optogenetics, a technique which allows researchers to precisely control the activity of specially modified light-sensitive neurons. Silencing pC1 neurons in female flies diminished their interest in male partners and their suitor's courtship songs. Activating these neural circuits made the females more receptive to males; it also triggered long-lasting aggressive behaviors not typically observed in virgin females, such as shoving and chasing. Deutsch et al. then identified the brain cells that pC1 neurons connect to, discovering that these neurons are part of an interconnected circuit also formed of aIPg neurons ­ a population of fly brain cells that shows sex differences and is linked to female aggression. The brains of females were then imaged as pC1 neurons were switched on, revealing a persistent activity which outlasted the activation in circuits containing both pC1 and aIPg neurons. Thus, these results link neural circuit architecture to long lasting changes in neural activity, and ultimately, in behavior. Future experiments can build on these results to determine how this circuit is activated during natural social interactions.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/ultraestrutura , Corte , Drosophila melanogaster/ultraestrutura , Feminino , Masculino , Microscopia Eletrônica , Atividade Motora/fisiologia , Vias Neurais/ultraestrutura
14.
Annu Rev Neurosci ; 43: 441-464, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283996

RESUMO

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.


Assuntos
Big Data , Encéfalo/fisiologia , Biologia Computacional , Rede Nervosa/fisiologia , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/fisiologia , Humanos
15.
FDG ; 20182018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30465045

RESUMO

Scientific software is often developed with professional scientists in mind, resulting in complex tools with a steep learning curve. Citizen science games, however, are designed for citizen scientists- members of the general public. These games maintain scientific accuracy while placing design goals such as usability and enjoyment at the forefront. In this paper, we identify an emerging use of game-based technology, in the repurposing of citizen science games to be software tools for professional scientists in their work. We discuss our experience in two such repurposings: Foldit, a protein folding and design game, and Eyewire, a web-based 3D neuron reconstruction game. Based on this experience, we provide evidence that the software artifacts produced for citizen science can be useful for professional scientists, and provide an overview of key design principles we found to be useful in the process of repurposing.

16.
Cell ; 173(5): 1293-1306.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775596

RESUMO

When 3D electron microscopy and calcium imaging are used to investigate the structure and function of neural circuits, the resulting datasets pose new challenges of visualization and interpretation. Here, we present a new kind of digital resource that encompasses almost 400 ganglion cells from a single patch of mouse retina. An online "museum" provides a 3D interactive view of each cell's anatomy, as well as graphs of its visual responses. The resource reveals two aspects of the retina's inner plexiform layer: an arbor segregation principle governing structure along the light axis and a density conservation principle governing structure in the tangential plane. Structure is related to visual function; ganglion cells with arbors near the layer of ganglion cell somas are more sustained in their visual responses on average. Our methods are potentially applicable to dense maps of neuronal anatomy and physiology in other parts of the nervous system.


Assuntos
Museus , Células Ganglionares da Retina/fisiologia , Algoritmos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...