Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(51): e2210773119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36512494

RESUMO

A prevalent and persistent biodiversity concern is that modern cropping systems lead to an erosion in crop genetic diversity. Although certain trait uniformity provides advantages in crop management and marketing, farmers facing risks from change in climate, pests, and markets are also incentivized to adopt new varieties to address complex and spatially variable genetics, environment, and crop management interactions to optimize crop performance. In this study, we applied phylogenetically blind and phylogenetically informed diversity metrics to reveal significant increases in both the spatial and temporal diversity of the US wheat crop over the past century. Contrary to commonly held perceptions on the negative impact of modern cropping systems on crop genetic diversity, our results demonstrated a win-win outcome where the widespread uptake of scientifically selected varieties increased both crop production and crop diversity.


Assuntos
Produção Agrícola , Triticum , Humanos , Triticum/genética , Fazendeiros , Biodiversidade , Agricultura
2.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897429

RESUMO

The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate a high-quality chromosome-scale genome assembly. Through comparative analysis and transcriptomics experiments, we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact steamer-like elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.


Assuntos
Dreissena , Animais , Dreissena/genética , Ecossistema , Genoma , Genômica , Espécies Introduzidas
4.
Hortic Res ; 8(1): 202, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465774

RESUMO

Pedigree information is of fundamental importance in breeding programs and related genetics efforts. However, many individuals have unknown pedigrees. While methods to identify and confirm direct parent-offspring relationships are routine, those for other types of close relationships have yet to be effectively and widely implemented with plants, due to complications such as asexual propagation and extensive inbreeding. The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes (referred to in this study as "summed potential lengths of shared haplotypes", SPLoSH). A custom Python script, HapShared, was developed to generate SPLoSH data in apple and sweet cherry. HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops. These distributions were then used to estimate previously unknown relationships. Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data. For cherry, a full-sib relationship was deduced for 'Emperor Francis, and 'Schmidt', a half-sib relationship for 'Van' and 'Windsor', and the paternal grandparents of 'Stella' were confirmed. For apple, 29 cultivars were found to share an unknown parent, the pedigree of the unknown parent of 'Cox's Pomona' was reconstructed, and 'Fameuse' was deduced to be a likely grandparent of 'McIntosh'. Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets, integrated genetic maps, and previously identified pedigree relationships. Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.

5.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744914

RESUMO

Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among "white rot" fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates-"brown rot." The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of "decay-stage-dependent" ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.IMPORTANCE Fungi dominate the turnover of wood, Earth's largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot "shortcut" often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches.


Assuntos
Adaptação Biológica , Biomassa , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Plantas/microbiologia , Biodegradação Ambiental , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Hidrólise , Plantas/metabolismo , Madeira/química , Madeira/metabolismo , Madeira/microbiologia
6.
Nat Commun ; 10(1): 5068, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699975

RESUMO

Parasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However, non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), such as Ug99, are a major threat to global food security. Here, we provide genomics-based evidence supporting that Ug99 arose by somatic hybridisation and nuclear exchange between dikaryons. Fully haplotype-resolved genome assembly and DNA proximity analysis reveal that Ug99 shares one haploid nucleus genotype with a much older African lineage of Pgt, with no recombination or chromosome reassortment. These findings indicate that nuclear exchange between dikaryotes can generate genetic diversity and facilitate the emergence of new lineages in asexual fungal populations.


Assuntos
Basidiomycota/genética , Genoma Fúngico/genética , Basidiomycota/fisiologia , Evolução Molecular , Variação Genética , Haplótipos , Reprodução , Homologia de Sequência do Ácido Nucleico , Triticum/microbiologia
7.
New Phytol ; 222(3): 1538-1550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664233

RESUMO

Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage-specific expansions (LSEs) of nodulation-associated genes can be a strategy to discover candidate gene families. Using bioinformatic tools, we identified 13 LSEs of nodulation-related secreted protein families, each unique to either Glycine, Arachis or Medicago lineages. In the Medicago lineage, nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examined NPD function using CRISPR/Cas9 multiplex genome editing to create Medicago truncatula NPD knockout lines, targeting one to five NPD genes. Mutant lines with differing combinations of NPD gene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild-type control. Double- and triple-knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of a DHHC-type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function. By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule-specific PLAT domain proteins and confirmed that they play a role in successful nodule formation.


Assuntos
Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Genótipo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Fenótipo , Nodulação/genética , Domínios Proteicos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia
8.
Cancer Res ; 78(9): 2343-2355, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437708

RESUMO

Tumor-associated macrophages (TAM) play a critical role in cancer development and progression. However, the heterogeneity of TAM presents a major challenge to identify clinically relevant markers for protumor TAM. Here, we report that expression of adipocyte/macrophage fatty acid-binding protein (A-FABP) in TAM promotes breast cancer progression. Although upregulation of A-FABP was inversely associated with breast cancer survival, deficiency of A-FABP significantly reduced mammary tumor growth and metastasis. Furthermore, the protumor effect of A-FABP was mediated by TAM, in particular, in a subset of TAM with a CD11b+F4/80+MHCII-Ly6C- phenotype. A-FABP expression in TAM facilitated protumor IL6/STAT3 signaling through regulation of the NFκB/miR-29b pathway. Collectively, our results suggest A-FABP as a new functional marker for protumor TAM.Significance: These findings identify A-FABP as a functional marker for protumor macrophages, thus offering a new target for tumor immunotherapy. Cancer Res; 78(9); 2343-55. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a Ácido Graxo/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Metástase Neoplásica
9.
BMC Bioinformatics ; 18(1): 367, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797229

RESUMO

BACKGROUND: Rapid generation of omics data in recent years have resulted in vast amounts of disconnected datasets without systemic integration and knowledge building, while individual groups have made customized, annotated datasets available on the web with few ways to link them to in-lab datasets. With so many research groups generating their own data, the ability to relate it to the larger genomic and comparative genomic context is becoming increasingly crucial to make full use of the data. RESULTS: The Omics Database Generator (ODG) allows users to create customized databases that utilize published genomics data integrated with experimental data which can be queried using a flexible graph database. When provided with omics and experimental data, ODG will create a comparative, multi-dimensional graph database. ODG can import definitions and annotations from other sources such as InterProScan, the Gene Ontology, ENZYME, UniPathway, and others. This annotation data can be especially useful for studying new or understudied species for which transcripts have only been predicted, and rapidly give additional layers of annotation to predicted genes. In better studied species, ODG can perform syntenic annotation translations or rapidly identify characteristics of a set of genes or nucleotide locations, such as hits from an association study. ODG provides a web-based user-interface for configuring the data import and for querying the database. Queries can also be run from the command-line and the database can be queried directly through programming language hooks available for most languages. ODG supports most common genomic formats as well as generic, easy to use tab-separated value format for user-provided annotations. CONCLUSIONS: ODG is a user-friendly database generation and query tool that adapts to the supplied data to produce a comparative genomic database or multi-layered annotation database. ODG provides rapid comparative genomic annotation and is therefore particularly useful for non-model or understudied species. For species for which more data are available, ODG can be used to conduct complex multi-omics, pattern-matching queries.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Software , Anotação de Sequência Molecular
10.
BMC Genomics ; 18(1): 578, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778149

RESUMO

BACKGROUND: Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. RESULTS: Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. CONCLUSIONS: Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies.


Assuntos
Genômica/métodos , Genômica/normas , Medicago truncatula/genética , Cromossomos de Plantas/genética , Análise Custo-Benefício , Genoma de Planta/genética , Genômica/economia , Controle de Qualidade , Padrões de Referência , Fatores de Tempo
11.
BMC Genomics ; 18(1): 541, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724409

RESUMO

BACKGROUND: Long-read and short-read sequencing technologies offer competing advantages for eukaryotic genome sequencing projects. Combinations of both may be appropriate for surveys of within-species genomic variation. METHODS: We developed a hybrid assembly pipeline called "Alpaca" that can operate on 20X long-read coverage plus about 50X short-insert and 50X long-insert short-read coverage. To preclude collapse of tandem repeats, Alpaca relies on base-call-corrected long reads for contig formation. RESULTS: Compared to two other assembly protocols, Alpaca demonstrated the most reference agreement and repeat capture on the rice genome. On three accessions of the model legume Medicago truncatula, Alpaca generated the most agreement to a conspecific reference and predicted tandemly repeated genes absent from the other assemblies. CONCLUSION: Our results suggest Alpaca is a useful tool for investigating structural and copy number variation within de novo assemblies of sampled populations.


Assuntos
Genes de Plantas/genética , Genômica/métodos , Variações do Número de Cópias de DNA , Medicago truncatula/genética , Família Multigênica/genética , Oryza/genética , Fenótipo , Sequências de Repetição em Tandem/genética
12.
Clin Cancer Res ; 23(16): 4704-4715, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28473535

RESUMO

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies.Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate.Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3' terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31-12.2; P = 0.02).Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704-15. ©2017 AACR.


Assuntos
Androstenos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variação Genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Metástase Neoplásica , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores Androgênicos/metabolismo
13.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369050

RESUMO

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Receptores de Células Precursoras de Linfócitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Proteína Quinase C beta/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Taxa de Sobrevida , Transativadores/genética
14.
BMC Genomics ; 18(1): 261, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347275

RESUMO

BACKGROUND: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula genomes enables near-comprehensive discovery of structural variants (SVs), analysis of rapidly evolving gene families, and ultimately, construction of a pan-genome. RESULTS: Genome-wide synteny based on 15 de novo M. truncatula assemblies effectively detected different types of SVs indicating that as much as 22% of the genome is involved in large structural changes, altogether affecting 28% of gene models. A total of 63 million base pairs (Mbp) of novel sequence was discovered, expanding the reference genome space for Medicago by 16%. Pan-genome analysis revealed that 42% (180 Mbp) of genomic sequences is missing in one or more accession, while examination of de novo annotated genes identified 67% (50,700) of all ortholog groups as dispensable - estimates comparable to recent studies in rice, maize and soybean. Rapidly evolving gene families typically associated with biotic interactions and stress response were found to be enriched in the accession-specific gene pool. The nucleotide-binding site leucine-rich repeat (NBS-LRR) family, in particular, harbors the highest level of nucleotide diversity, large effect single nucleotide change, protein diversity, and presence/absence variation. However, the leucine-rich repeat (LRR) and heat shock gene families are disproportionately affected by large effect single nucleotide changes and even higher levels of copy number variation. CONCLUSIONS: Analysis of multiple M. truncatula genomes illustrates the value of de novo assemblies to discover and describe structural variation, something that is often under-estimated when using read-mapping approaches. Comparisons among the de novo assemblies also indicate that different large gene families differ in the architecture of their structural variation.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma de Planta , Medicago truncatula/genética , Hibridização Genômica Comparativa , Proteínas de Choque Térmico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Repetições Ricas em Leucina , Proteínas de Plantas/genética , Proteínas/genética , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
15.
J Mol Diagn ; 18(6): 872-881, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27597741

RESUMO

Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory.


Assuntos
Variações do Número de Cópias de DNA , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Biologia Computacional/métodos , Feminino , Deleção de Genes , Duplicação Gênica , Marcadores Genéticos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Biotechnol J ; 11(9): 1151-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27374913

RESUMO

Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines.


Assuntos
Mapeamento Cromossômico/métodos , Genoma , Análise de Sequência de DNA/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Etiquetas de Sequências Expressas , Camundongos
17.
Cell Rep ; 14(8): 1979-90, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26904939

RESUMO

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/ß-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and ß-catenin activity. ß-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and ß-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3ß and the SWI/SNF gene Arid1b to increase ß-catenin. Knockdown of Arid1b or Gsk3ß in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/ß-catenin pathway inhibitors in neurofibroma therapeutic trials.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Acetiltransferase N-Terminal A/genética , Neurofibromatose 1/genética , Neoplasias do Sistema Nervoso Periférico/genética , Fator de Transcrição STAT3/genética , beta Catenina/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Mutagênese Insercional , Acetiltransferase N-Terminal A/antagonistas & inibidores , Acetiltransferase N-Terminal A/metabolismo , Transplante de Neoplasias , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias do Sistema Nervoso Periférico/metabolismo , Neoplasias do Sistema Nervoso Periférico/patologia , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
18.
Genome Med ; 7: 127, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26643039

RESUMO

Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.


Assuntos
Mutação INDEL , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Humanos , Sensibilidade e Especificidade
19.
BMC Cancer ; 15: 769, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497383

RESUMO

BACKGROUND: Alterations in methylation patterns, miRNA expression, and stem cell protein expression occur in germ cell tumors (GCTs). Our goal is to integrate molecular data across platforms to identify molecular signatures in the three main histologic subtypes of Type I and Type II GCTs (yolk sac tumor (YST), germinoma, and teratoma). METHODS: We included 39 GCTs and 7 paired adjacent tissue samples in the current analysis. Molecular data available for analysis include DNA methylation data (Illumina GoldenGate Cancer Methylation Panel I), miRNA expression (NanoString nCounter miRNA platform), and stem cell factor expression (SABiosciences Human Embryonic Stem Cell Array). We evaluated the cross platform correlations of the data features using the Maximum Information Coefficient (MIC). RESULTS: In analyses of individual datasets, differences were observed by tumor histology. Germinomas had higher expression of transcription factors maintaining stemness, while YSTs had higher expression of cytokines, endoderm and endothelial markers. We also observed differences in miRNA expression, with miR-371-5p, miR-122, miR-302a, miR-302d, and miR-373 showing elevated expression in one or more histologic subtypes. Using the MIC, we identified correlations across the data features, including six major hubs with higher expression in YST (LEFTY1, LEFTY2, miR302b, miR302a, miR 126, and miR 122) compared with other GCT. CONCLUSIONS: While prognosis for GCTs is overall favorable, many patients experience resistance to chemotherapy, relapse and/or long term adverse health effects following treatment. Targeted therapies, based on integrated analyses of molecular tumor data such as that presented here, may provide a way to secure high cure rates while reducing unintended health consequences.


Assuntos
Metilação de DNA/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Tumor do Seio Endodérmico/metabolismo , Feminino , Genótipo , Humanos , Lactente , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Adulto Jovem
20.
Antimicrob Agents Chemother ; 59(12): 7723-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438492

RESUMO

Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health.


Assuntos
Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Infecções por Enterobacteriaceae/microbiologia , beta-Lactamases/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/transmissão , Genoma Bacteriano , Geografia , Humanos , Testes de Sensibilidade Microbiana , Meio-Oeste dos Estados Unidos , Minnesota , North Dakota , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...