Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; : e2400013, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509742

RESUMO

The development of biosafe theranostic nanoplatforms has attracted great attention due to their multifunctional behavior, reduced potential toxicity, and improved long-term safety. When considering photoacoustic contrast agents and photothermal conversion tools, melanin and constructs like melanin are highly appealing due to their ability to absorb optical energy and convert it into heat. Following a sustainable approach, in this study, silver-melanin like-silica nanoplatforms are synthesized exploiting different bio-available and inexpensive phenolic acids as potential melanogenic precursors and exploring their role in tuning the final systems architecture. The UV-Vis combined with X-Ray Diffraction investigation proves metallic silver formation, while Transmission Electron Microscopy analysis reveals that different morphologies can be obtained by properly selecting the phenolic precursors. By looking at the characterization results, a tentative formation mechanism is proposed to explain how phenolic precursors' redox behavior may affect the nanoplatforms' structure. The antibacterial activity experiments showed that all synthesized systems have a strong inhibitory effect on Escherichia coli, even at low concentrations. Furthermore, very sensitive Photoacoustic Imaging capabilities and significant photothermal behavior under laser irradiation are exhibited. Finally, a marked influence of phenol nature on the final system architecture is revealed resulting in a significant effect on both biological and photoacoustic features of the obtained systems. These melanin-based hybrid systems exhibit excellent potential as triggerable nanoplatforms for various biomedical applications.

2.
Int J Biol Macromol ; 263(Pt 1): 130210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365144

RESUMO

Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.


Assuntos
Embalagem de Alimentos , Substâncias Húmicas , Ácidos Pentanoicos , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Poliésteres
3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139203

RESUMO

Bioinspired nanoparticles have recently been gaining attention as promising multifunctional nanoplatforms for therapeutic applications in cancer, including breast cancer. Here, the efficiency of the chemo-photothermal and photoacoustic properties of hybrid albumin-modified nanoparticles (HSA-NPs) loaded with doxorubicin was evaluated in a three-dimensional breast cancer cell model. The HSA-NPs showed a higher uptake and deeper penetration into breast cancer spheroids than healthy breast cell 3D cultures. Confocal microscopy revealed that, in tumour spheroids incubated with doxorubicin-loaded NPs for 16 h, doxorubicin was mainly localised in the cytoplasm, while a strong signal was detectable at the nuclear level after 24 h, suggesting a time-dependent uptake. To evaluate the cytotoxicity of doxorubicin-loaded NPs, tumour spheroids were treated for up to 96 h with increasing concentrations of NPs, showing marked toxicity only at the highest concentration of doxorubicin. When doxorubicin administration was combined with laser photothermal irradiation, enhanced cytotoxicity was observed at lower concentrations and incubation times. Finally, the photoacoustic properties of doxorubicin-loaded NPs were evaluated in tumour spheroids, showing a detectable signal increasing with NP concentration. Overall, our data show that the combined effect of chemo-photothermal therapy results in a shorter exposure time to doxorubicin and a lower drug dose. Furthermore, owing to the photoacoustic properties of the NPs, this nanoplatform may represent a good candidate for theranostic applications.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Técnicas Fotoacústicas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Doxorrubicina/farmacologia , Fototerapia/métodos , Linhagem Celular Tumoral , Hipertermia Induzida/métodos
4.
ACS Appl Mater Interfaces ; 15(40): 46756-46764, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774145

RESUMO

Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisting of ternary hybrid nanoparticles with a silver core and a melanin component embedded into a silica matrix. Although preliminary evidence suggested a crucial role of the Ag sonophore and the melanin-containing nanoenvironment, whether and in what manner the PA response is controlled and affected by the self-structured hybrid nanosystems remained unclear. Because of their potential as multifunctional platforms for biomedical applications, a detailed investigation of the metal-polymer-matrix interplay underlying the PA response was undertaken to understand the physical and chemical factors determining the enhanced response and to optimize the architecture, composition, and performance of the nanoparticles for efficient imaging applications. Herein, we provide the evidence for a strong synergistic interaction between eumelanin and Ag which suggests an important role in the in situ-generated metal-organic interface. In particular, we show that a strict ratio between melanin and silver precursors and an accurate choice of metal nanoparticle dimension and the kind of metal are essential for achieving strong enhancements of the PA response. Systematic variation of the metal/melanin component is thus shown to offer the means of tuning the stability and intensity of the photoacoustic response for various biomedical and theranostic applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Técnicas Fotoacústicas , Melaninas/química , Prata/química , Dióxido de Silício , Nanopartículas/química , Nanopartículas Metálicas/química , Polímeros , Técnicas Fotoacústicas/métodos
5.
Biomater Adv ; 153: 213558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37467646

RESUMO

Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing to the reversible Ce+3/Ce+4 surface oxidation state. Moreover, surface functionalization leads to higher catalytic activity and selectivity, as well as more tunable enzyme-mimicking performances. Conjugation with melanin is an adequate strategy to boost and enrich CeO2 NPs biological features, because of melanin redox properties accounting for intrinsic antioxidant, antimicrobial and anti-inflammatory power. Herein, hybrid Melanin/CeO2 nanostructures were designed by simply coating the metal-oxide nanoparticles with melanin chains, obtained in-situ through ligand-to-metal charge transfer mechanism, according to a bioinspired approach. Obtained hybrid nanostructures underwent detailed physico-chemical characterization. Morphological and textural features were investigated through TEM, XRD and N2 physisorption. The nature of nanoparticle-melanin interaction was analyzed through FTIR, UV-vis and EPR spectroscopy. Melanin-coated hybrid nanostructures exhibited a relevant antioxidant activity, confirmed by a powerful quenching effect for DPPH radical, reaching 81 % inhibition at 33 µg/mL. A promising anti-inflammatory efficacy of the melanin-coated hybrid nanostructures was validated through a significant inhibition of BSA denaturation after 3 h. Meanwhile, the enzyme-mimicking activity was corroborated by a prolonged peroxidase activity after 8 h at 100 µg/mL and a relevant catalase-like action, by halving the H2O2 level in 30 min at 50 µg/mL. Antimicrobial assays attested that conjugation with melanin dramatically boosted CeO2 biocide activity against both Gram (-) and Gram (+) strains. Cytocompatibility tests demonstrated that the melanin coating not only enhanced the CeO2 nanostructures biomimicry, resulting in improved cell viability for human dermal fibroblast cells (HDFs), but mostly they proved that Melanin-CeO2 NPs were able to control the oxidative stress, modulating the production of nitrite and reactive oxygen species (ROS) levels in HDFs, under physiological conditions. Such remarkable outcomes make hybrid melanin-CeO2 nanozymes, promising redox-active interfaces for regenerative medicine.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Humanos , Melaninas/farmacologia , Peróxido de Hidrogênio , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Antioxidantes/química , Homeostase
6.
Biomacromolecules ; 24(6): 2691-2705, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167573

RESUMO

Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/farmacologia , Hidrogéis/química , Substâncias Húmicas , Antioxidantes/farmacologia , Reagentes de Ligações Cruzadas/química , Antibacterianos/farmacologia
7.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36478021

RESUMO

Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.


Assuntos
Plásticos , Polietileno , Animais , Polietileno/metabolismo , Cladosporium/metabolismo , Polímeros , Biodegradação Ambiental
8.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080642

RESUMO

Heparin plays multiple biological roles depending on the availability of active sites strongly influenced by the conformation and the structure of polysaccharide chains. Combining different components at the molecular scale offers an extraordinary chance to easily tune the structural organization of heparin required for exploring new potential applications. In fact, the combination of different material types leads to challenges that cannot be achieved by each single component. In this study, hybrid heparin/silica nanoparticles were synthesized, and the role of silica as a templating agent for heparin supramolecular organization was investigated. The effect of synthesis parameters on particles compositions was deeply investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Transmission Electron Microscopy (TEM) reveals a different supramolecular organization of both components, leading to amazing organic-inorganic nanoparticles with different behavior in drug encapsulation and release. Furthermore, favorable biocompatibility for healthy human dermal fibroblasts (HDF) and tumor HS578T cells has been assessed, and a different biological behavior was observed, ascribed to different surface charge and morphology of synthesized nanoparticles.

9.
Langmuir ; 38(18): 5481-5493, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35476419

RESUMO

Fungal cellulases generally contain a reduced amount of ß-glucosidase (BG), which does not allow for efficient cellulose hydrolysis. To address this issue, we implemented an easy co-immobilization procedure of ß-glucosidase and cellulase by adsorption on wrinkled mesoporous silica nanoparticles with radial and hierarchical open pore structures, exhibiting smaller (WSN) and larger (WSN-p) inter-wrinkle distances. The immobilization was carried out separately on different vectors (WSN for BG and WSN-p for cellulase), simultaneously on the same vector (WSN-p), and sequentially on the same vector (WSN-p) in order to optimize the synergy between cellulase and BG. The obtained results pointed out that the best biocatalyst is that prepared through simultaneous immobilization of BG and cellulase on the same vector (WSN-p). In this case, the adsorption resulted in 20% yield of immobilization, corresponding to an enzyme loading of 100 mg/g of support. 82% yield of reaction and 72 µmol/min·g activity were obtained, evaluated for the hydrolysis of cellulose extracted from Eriobotrya japonica leaves. All reactions were carried out at a standard temperature of 50 °C. The biocatalyst retained 83% of the initial yield of reaction after 9 cycles of reuse. Moreover, it had better stability than the free enzyme mixture in a wide range of temperatures, preserving 72% of the initial yield of reaction up to 90 °C.


Assuntos
Celulase , Eriobotrya , Nanopartículas , Celulase/química , Celulose/química , Enzimas Imobilizadas/química , Hidrólise , Nanopartículas/química , Folhas de Planta , Dióxido de Silício , beta-Glucosidase
10.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335307

RESUMO

Hybrid tannic acid-silica-based porous nanoparticles, TA-SiO2 NPs, have been synthesized under mild conditions in the presence of green and renewable tannic acid biopolymer, a glycoside polymer of gallic acid present in a large part of plants. Tannic acid (TA) was exploited as both a structuring directing agent and green chelating site for heavy metal ions recovery from aqueous solutions. Particles morphologies and porosity were easily tuned by varying the TA initial amount. The sample produced with the largest TA amount showed a specific surface area an order of magnitude larger than silica nanoparticles. The adsorption performance was investigated by using TA-SiO2 NPs as adsorbents for copper (II) ions from an aqueous solution. The effects of the initial Cu2+ ions concentration and the pH values on the adsorption capability were also investigated. The resulting TA-SiO2 NPs exhibited a different adsorption behaviour towards Cu2+, which was demonstrated through different tests. The largest adsorption (i.e., ~50 wt% of the initial Cu2+ amount) was obtained with the more porous nanoplatforms bearing a higher final TA content. The TA-nanoplatforms, stable in pH value around neutral conditions, can be easily produced and their use would well comply with a green strategy to reduce wastewater pollution.


Assuntos
Metais Pesados , Nanopartículas , Adsorção , Nanopartículas/química , Dióxido de Silício/química , Taninos/química
11.
Chemosphere ; 287(Pt 1): 131985, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34454229

RESUMO

Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an inorganic nanostructured component, leading to more stable hybrid nanomaterials with tunable functionalities. Indeed, chemical composition of HA can determine their interactions with the inorganic constituent in the hybrid nanoparticles and consequently affect their overall physico-chemical properties, including their stability and functional properties in aqueous environment. As a fundamental contribution to HA materials-based technology, this study aims at unveiling this aspect. To this purpose, SiO2 nanoparticles have been chosen as a model platform and three different HAs extracted from composted biomasses, manure (HA_Man), artichoke residues (HA_Art) and coffee grounds (HA_Cof), were employed to synthetize hybrid HA-SiO2 nanoparticles through in-situ sol-gel synthesis. Prepared samples were submitted to aging in water to assess their stability. Furthermore, antioxidant properties and physico-chemical properties of both as prepared and aged samples in aqueous environment were assessed through Scanning Electron Microscopy (SEM), N2 physisorption, Simultaneous Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) Analysis, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) spectroscopies. The experimental results highlighted that hybrid HA-SiO2 nanostructures acted as dynamic systems which exhibit structural supramolecular reorganization during aging in aqueous environment with marked effects on physico-chemical and functional properties, including improved antioxidant activity. Obtained results enlighten a unique aspect of interactions between HA and inorganic nanoparticles that could be useful to predict their behavior in aqueous environment. Furthermore, the proposed approach traces a technological route for the exploitation of organic biowaste in the design of hybrid nanomaterials, providing a significant contribution to the development of waste to wealth strategies based on humic substances.


Assuntos
Substâncias Húmicas , Nanoestruturas , Idoso , Humanos , Substâncias Húmicas/análise , Masculino , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
12.
Biomacromolecules ; 23(1): 443-453, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34936338

RESUMO

Exploring the chance to convert biowaste into a valuable resource, this study tests the potential role of humic acids (HA), a class of multifunctional compounds obtained by oxidative decomposition of biomass, as physical agents to improve gelatin's mechanical and thermal properties. To this purpose, gelatin-HA aqueous samples were prepared at increasing HA content. HA/gelatin concentrations changed in the range 2.67-26.67 (wt/wt)%. Multiple techniques were employed to assess the influence of HA content on the gel properties and to unveil the underlying mechanisms. HAs increased gel strength up to a concentration of 13.33 (wt/wt)% and led to a weaker gel at higher concentrations. FT-IR and DSC results proved that HAs can establish noncovalent interactions through H-bonding with gelatin. Coagulation phenomena occur because of HA-gelatin interactions, and at concentrations greater than 13.33 (wt/wt)%, HAs established preferential bonds with water molecules, preventing them from coordinating with gelatin chains. These features were accompanied by a change in the secondary structure of gelatin, which lost the triple helix structure and exhibited an increase in the random coil conformation. Besides, higher HA weight content caused swelling phenomena due to HA water absorption, contributing to a weaker gel. The current findings may be useful to enable a better control of gelatin structures modified with composted biowaste, extending their exploitation for a large set of technological applications.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Substâncias Húmicas , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água
13.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681890

RESUMO

Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.


Assuntos
Albuminas/química , Neoplasias da Mama/terapia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Terapia Fototérmica/métodos , Antibióticos Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Terapia Combinada , Liberação Controlada de Fármacos , Feminino , Humanos , Raios Infravermelhos , Nanopartículas/química , Células Tumorais Cultivadas
14.
Nanomaterials (Basel) ; 10(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756369

RESUMO

Melanins are a group of dark insoluble pigments found widespread in nature. In mammals, the brown-black eumelanins and the reddish-yellow pheomelanins are the main determinants of skin, hair, and eye pigmentation and play a significant role in photoprotection as well as in many biological functions ensuring homeostasis. Due to their broad-spectrum light absorption, radical scavenging, electric conductivity, and paramagnetic behavior, eumelanins are widely studied in the biomedical field. The continuing advancements in the development of biomimetic design strategies offer novel opportunities toward specifically engineered multifunctional biomaterials for regenerative medicine. Melanin and melanin-like coatings have been shown to increase cell attachment and proliferation on different substrates and to promote and ameliorate skin, bone, and nerve defect healing in several in vivo models. Herein, the state of the art and future perspectives of melanins as promising bioinspired platforms for natural regeneration processes are highlighted and discussed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32733871

RESUMO

Bioconjugation of a recently developed photoacoustic nanoprobe, based on silica-templated eumelanin-silver hybrid nanoparticles (MelaSil_Ag-NPs), with human serum albumin (HSA) is disclosed herein as an efficient and practical strategy to improve photostability and to perform SPARC mediated internalization in breast cancer cells. Modification of NPs with HSA induced a slight viability decrease in breast cancer cells (HS578T) and normal breast cells (MCF10a) when incubated with HSA-NPs up to 100 µg/mL concentration for 72 h and a complete suppression of hemotoxicity for long incubation times. Uptake experiments with MelaSil_Ag-HSA NPs indicated very high and selective internalization via SPARC in HS578T (SPARC positive cells) but not in MCF10a (SPARC negative cells), as evaluated by using endocytosis inhibitors. The binding of SPARC to HSA was confirmed by Co-IP and Dot-blot assays. Additional studies were performed to analyze the interaction of MelaSil_Ag-HSA NPs with protein corona. Data showed a dramatic diminution of interacting proteins in HSA conjugated NPs compared to bare NPs. HSA-coated MelaSil_Ag-NPs are thus disclosed as a novel functional nanohybrid for potential photoacoustic imaging applications.

16.
Polymers (Basel) ; 12(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575792

RESUMO

The development of new styrene-based hyper-crosslinked nanocomposites (HCLN) containing mesoporous silica nanoparticles (MSN) is reported here as a new strategy to obtain functional high surface area materials with an enhanced hydrophilic character. The HCLN composition, morphology and porous structure were analyzed using a multi-technique approach. The HCLN displayed a high surface area (above 1600 m2/g) and higher microporosity than the corresponding hyper-crosslinked neat resin. The enhanced adsorption properties of the HCLN towards polar organic dyes was demonstrated through the adsorption of a reactive dye, Remazol Brilliant Blue R (RB). In particular, the HCLN containing 5phr MSN showed the highest adsorption capacity of RB.

17.
Polymers (Basel) ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340165

RESUMO

Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organic-inorganic SiO2/HA nanostructures were synthesized via an in-situ sol-gel route, exploiting both physical entrapment and chemical coupling. The latter was achieved through amide bond formation between carboxyl groups of HA and the amino group of 3-aminopropyltriethoxysilane (APTS), as confirmed by Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Monodisperse hybrid nanoparticles about 90 nm in diameter were obtained in both cases, yet Electron Paramagnetic Resonance (EPR) spectroscopy highlighted the different supramolecular organization of HA. The altered HA conformation was reflected in different antioxidant properties of the conjugated nanoparticles that, however, resulted in being higher than for pure HA. Our findings proved the key role of both components in defining the morphology of the final system, as well as the efficacy of the ceramic component in templating the HA supramolecular organization and consequently tuning their functional features, thus defining a green strategy for bio-waste valorization.

18.
Materials (Basel) ; 13(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295251

RESUMO

Natural fibers such as kenaf, hemp, flax, jute, and sisal have become the subject of much research as potential green or eco-friendly reinforcement composites, since they assure the reduction of weight, cost, and CO2 release with less reliance on oil sources. Herein, an inexpensive and eco-friendly waterglass treatment is proposed, allowing the production of silica-coated fibers that can be easily obtained in micro/nano fibrils through a low power mixer. The silica coating has been exploited to improve the chemical compatibility between fibers and the polymer matrix through the reaction of silanol groups with suitable coupling agents. In particular, silica-coated fibers easily functionalized with (3-Aminopropyl) triethoxysilane (APTS) were used as a filler in the manufacturing of epoxy-based composites. Morphological investigation of the composites through Scanning Electron Microscopy (SEM) demonstrated that the filler has a tendency to produce a web-like structure, formed by continuously interconnected fibrils and microfibrils, from which particularly effective mechanical properties may be obtained. Dynamic Mechanical Analysis (DMA) shows that the functionalized fibers, in a concentration of 5 wt%, strongly affect the glass transformation temperature (10 °C increase) and the storage modulus of the pristine resin. Taking into account the large number of organosilicon compounds (in particular the alkoxide ones) available on the market, the new process appears to pave the way for the cleaner and cheaper production of biocomposites with different polymeric matrices and well-tailored interfaces.

19.
Nanomaterials (Basel) ; 10(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991718

RESUMO

One of the main issues in preparing polymer-based nanocomposites with effective properties is to achieve a good dispersion of the nanoparticles into the matrix. Chemical interfacial modifications by specific coupling agents represents a good way to reach this objective. Actually, time consuming compatibilization procedures strongly compromise the sustainability of these strategies. In this study, the role of particles' architectures in their dispersion into a poly-lactic acid matrix and their subsequent influences on physical-chemical properties of the obtained nanocomposites were investigated. Two kinds of silica nanoparticles, "smooth" and "wrinkled," with different surface areas (≈30 and ≈600 m2/g respectively) were synthesized through a modified Stöber method and used, without any chemical surface pre-treatments, as fillers to produce poly-lactic acid based nanocomposites. The key role played by wrinkled texture in modifying the physical interaction at the polymer-filler interface and in driving composite properties, was investigated and reflected in the final bulk properties. Detailed investigations revealed the presence of wrinkled nanoparticles, leading to (i) an enormous increase of the chain relaxation time, by almost 30 times compared to the neat PLA matrix; (ii) intensification of the shear-thinning behavior at low shear-rates; and (iii) slightly slower thermal degradation of polylactic acid.

20.
Biomimetics (Basel) ; 4(2)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151301

RESUMO

Nature has provided a valuable source of inspiration for developing high performance multifunctional materials. Particularly, catechol-containing amino acid l-3,4-dihydroxyphenylalanine (l-DOPA) has aroused the interest to design hybrid multifunctional materials with superior adhesive ability. DOPA oxidative polymerization mediated by either melanogenic enzymes or an alkaline environment involving catechol intermolecular cross-linking, ultimately leads to melanin oligomers. Recently, relevant studies disclosed the ability of Ti-based nanostructures to tune melanin's supramolecular structure during its formation, starting from melanogenic precursors, thus improving both antioxidant and antimicrobial properties. In this work, we propose a novel biomimetic approach to design hybrid DOPA melanin-like nanostructures through a hydrothermal synthesis opportunely modified by using citric acid to control hydrolysis and condensation reactions of titanium alkoxide precursors. UV-Vis and Electron paramagnetic resonance (EPR) spectroscopic evidences highlighted the key role of citrate-Ti(IV) and DOPA-Ti(IV) complexes in controlling DOPA polymerization, which specifically occurred during the hydrothermal step, mediating and tuning its conversion to melanin-like oligomers. Trasmission electron microscopy (TEM) images proved the efficacy of the proposed synthesis approach in tuning the formation of nanosized globular nanostructures, with high biocide performances. The obtained findings could provide strategic guidelines to set up biomimetic processes, exploiting the catechol-metal complex to obtain hybrid melanin-like nanosystems with optimized multifunctional behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...