Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JMIR Ment Health ; 9(9): e38067, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149730

RESUMO

BACKGROUND: While mental health applications are increasingly becoming available for large populations of users, there is a lack of controlled trials on the impacts of such applications. Artificial intelligence (AI)-empowered agents have been evaluated when assisting adults with cognitive impairments; however, few applications are available for aging adults who are still actively working. These adults often have high stress levels related to changes in their work places, and related symptoms eventually affect their quality of life. OBJECTIVE: We aimed to evaluate the contribution of TEO (Therapy Empowerment Opportunity), a mobile personal health care agent with conversational AI. TEO promotes mental health and well-being by engaging patients in conversations to recollect the details of events that increased their anxiety and by providing therapeutic exercises and suggestions. METHODS: The study was based on a protocolized intervention for stress and anxiety management. Participants with stress symptoms and mild-to-moderate anxiety received an 8-week cognitive behavioral therapy (CBT) intervention delivered remotely. A group of participants also interacted with the agent TEO. The participants were active workers aged over 55 years. The experimental groups were as follows: group 1, traditional therapy; group 2, traditional therapy and mobile health (mHealth) agent; group 3, mHealth agent; and group 4, no treatment (assigned to a waiting list). Symptoms related to stress (anxiety, physical disease, and depression) were assessed prior to treatment (T1), at the end (T2), and 3 months after treatment (T3), using standardized psychological questionnaires. Moreover, the Patient Health Questionnaire-8 and General Anxiety Disorders-7 scales were administered before the intervention (T1), at mid-term (T2), at the end of the intervention (T3), and after 3 months (T4). At the end of the intervention, participants in groups 1, 2, and 3 filled in a satisfaction questionnaire. RESULTS: Despite randomization, statistically significant differences between groups were present at T1. Group 4 showed lower levels of anxiety and depression compared with group 1, and lower levels of stress compared with group 2. Comparisons between groups at T2 and T3 did not show significant differences in outcomes. Analyses conducted within groups showed significant differences between times in group 2, with greater improvements in the levels of stress and scores related to overall well-being. A general worsening trend between T2 and T3 was detected in all groups, with a significant increase in stress levels in group 2. Group 2 reported higher levels of perceived usefulness and satisfaction. CONCLUSIONS: No statistically significant differences could be observed between participants who used the mHealth app alone or within the traditional CBT setting. However, the results indicated significant differences within the groups that received treatment and a stable tendency toward improvement, which was limited to individual perceptions of stress-related symptoms. TRIAL REGISTRATION: ClinicalTrials.gov NCT04809090; https://clinicaltrials.gov/ct2/show/NCT04809090.

2.
Contrast Media Mol Imaging ; 2018: 1382309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510492

RESUMO

Aim: To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images. Methods: We retrospectively selected a cohort of 472 patients (divided in the training, validation, and test sets) submitted to staging FDG-PET/CT within 60 days before biopsy or surgery. TNM system seventh edition was used as reference. Postprocessing was performed to generate an adequate dataset. The input of CNNs was a bounding box on both PET and CT images, cropped around the lesion centre. The results were classified as Correct (concordance between reference and prediction) and Incorrect (discordance between reference and prediction). Accuracy (Correct/[Correct + Incorrect]), recall (Correctly predicted T3-T4/[all T3-T4]), and specificity (Correctly predicted T1-T2/[all T1-T2]), as commonly defined in deep learning models, were used to evaluate CNN performance. The area under the curve (AUC) was calculated for the final model. Results: The algorithm, composed of two networks (a "feature extractor" and a "classifier"), developed and tested achieved an accuracy, recall, specificity, and AUC of 87%, 69%, 69%, and 0.83; 86%, 77%, 70%, and 0.73; and 90%, 47%, 67%, and 0.68 in the training, validation, and test sets, respectively. Conclusion: We obtained proof of concept that CNNs can be used as a tool to assist in the staging of patients affected by lung cancer.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Área Sob a Curva , Aprendizado Profundo , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/classificação , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA