Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transpl Int ; 36: 11758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116170

RESUMO

Peak spirometry after single lung transplantation (SLTx) for interstitial lung disease (ILD) is lower than after double lung transplantation (DLTx), however the pathophysiologic mechanisms are unclear. We aim to assess respiratory mechanics in SLTx and DLTx for ILD using oscillometry. Spirometry and oscillometry (tremoflo® C-100) were performed in stable SLTx and DLTx recipients in a multi-center study. Resistance (R5, R5-19) and reactance (X5) were compared between LTx recipient groups, matched by age and gender. A model of respiratory impedance using ILD and DLTx data was performed. In total, 45 stable LTx recipients were recruited (SLTx n = 23, DLTx n = 22; males: 87.0% vs. 77.3%; median age 63.0 vs. 63.0 years). Spirometry was significantly lower after SLTx compared with DLTx: %-predicted mean (SD) FEV1 [70.0 (14.5) vs. 93.5 (26.0)%]; FVC [70.5 (16.8) vs. 90.7 (12.8)%], p < 0.01. R5 and R5-19 were similar between groups (p = 0.94 and p = 0.11, respectively) yet X5 was significantly worse after SLTx: median (IQR) X5 [-1.88 (-2.89 to -1.39) vs. -1.22 (-1.87 to -0.86)] cmH2O.s/L], p < 0.01. R5 and X5 measurements from the model were congruent with measurements in SLTx recipients. The similarities in resistance, yet differences in spirometry and reactance between both transplant groups suggest the important contribution of elastic properties to the pathophysiology. Oscillometry may provide further insight into the physiological changes occurring post-LTx.


Assuntos
Doenças Pulmonares Intersticiais , Pulmão , Masculino , Humanos , Pessoa de Meia-Idade , Oscilometria/métodos , Volume Expiratório Forçado/fisiologia , Austrália , Doenças Pulmonares Intersticiais/cirurgia , Aloenxertos
2.
Neuroophthalmology ; 47(1): 7-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798866

RESUMO

We report a case of bilateral horizontal conjugate gaze palsy due to a dorsal median pontine haemorrhage. The development of horizontal gaze palsy has been attributed to lesions in the pontine tegmentum, and in this case, has occurred in conjunction with other features as part of Foville's syndrome. Complete horizontal gaze palsy is a rare clinical manifestation as bilateral involvement is unusual. Our case provides further insight into the intricacies of the brainstem neuroanatomy through a description of the involved neural pathways and nuclei accounting for complex neurological manifestations in one patient.

3.
J Crit Care ; 66: 33-43, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438132

RESUMO

PURPOSE: This scoping review sought to identify objective factors to assist clinicians and policy-makers in making consistent, objective and ethically sound decisions about resource allocation when healthcare rationing is inevitable. MATERIALS AND METHODS: Review of guidelines and tools used in ICUs, hospital wards and emergency departments on how to best allocate intensive care beds and ventilators either during routine care or developed during previous epidemics, and association with patient outcomes during and after hospitalisation. RESULTS: Eighty publications from 20 countries reporting accuracy or validity of prognostic tools/algorithms, or significant correlation between prognostic variables and clinical outcomes met our eligibility criteria: twelve pandemic guidelines/triage protocols/consensus statements, twenty-two pandemic algorithms, and 46 prognostic tools/variables from non-crisis situations. Prognostic indicators presented here can be combined to create locally-relevant triage algorithms for clinicians and policy makers deciding about allocation of ICU beds and ventilators during a pandemic. No consensus was found on the ethical issues to incorporate in the decision to admit or triage out of intensive care. CONCLUSIONS: This review provides a unique reference intended as a discussion starter for clinicians and policy makers to consider formalising an objective a locally-relevant triage consensus document that enhances confidence in decision-making during healthcare rationing of critical care and ventilator resources.


Assuntos
COVID-19 , Pandemias , Cuidados Críticos , Alocação de Recursos para a Atenção à Saúde , Humanos , Triagem , Ventiladores Mecânicos
4.
Neuromolecular Med ; 22(2): 218-226, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31664682

RESUMO

Mutations in LRRK2 are currently recognized as the most common monogenetic cause of Parkinsonism. The elevation of kinase activity of LRRK2 that frequently accompanies its mutations is widely thought to contribute to its toxicity. Accordingly, many groups have developed LRRK2-specific kinase inhibitors as a potential therapeutic strategy. Given that protein phosphorylation is a reversible event, we sought to elucidate the phosphatase(s) that can reverse LRRK2-mediated phosphorylation, with the view that targeting this phosphatase(s) may similarly be beneficial. Using an unbiased RNAi phosphatase screen conducted in a Drosophila LRRK2 model, we identified PP2A as a genetic modulator of LRRK2-induced neurotoxicity. Further, we also identified ribosomal S6 kinase (S6K), a target of PP2A, as a novel regulator of LRRK2 function. Finally, we showed that modulation of PP2A or S6K activities ameliorates LRRK2-associated disease phenotype in Drosophila.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteína Fosfatase 2/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Ceramidas/farmacologia , Modelos Animais de Doenças , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Mutação com Ganho de Função , Técnicas de Silenciamento de Genes , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Mutação de Sentido Incorreto , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
5.
Front Cell Dev Biol ; 7: 129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428609

RESUMO

Drosophila blue cheese (bchs) encodes a BEACH domain adaptor protein that, like its human homolog ALFY, promotes clearance of aggregated proteins through its interaction with Atg5 and p62. bchs mutations lead to age-dependent accumulation of ubiquitinated inclusions and progressive neurodegeneration in the fly brain, but neither the influence of autophagy on bchs-related degeneration, nor bchs' placement in the autophagic hierarchy have been shown. We present epistatic evidence in a well-defined larval motor neuron paradigm that in bchs mutants, synaptic accumulation of ubiquitinated aggregates and neuronal death can be rescued by pharmacologically amplifying autophagic initiation. Further, pharmacological rescue requires at least one intact BEACH-containing isoform of the two identified in this study. Genetically augmenting a late step in autophagy, however, rescues even a strong mutation which retains only a third, non-BEACH containing isoform. Using living primary larval brain neurons, we elucidate the primary defect in bchs to be an excess of early autophagic compartments and a deficit in mature compartments. Conversely, rescuing the mutants by full-length Bchs over-expression induces mature compartment proliferation and rescues neuronal death. Surprisingly, only the longest Bchs isoform colocalizes well with autophagosomes, and shuttles between different vesicular locations depending on the type of autophagic impetus applied. Our results are consistent with Bchs promoting autophagic maturation, and the BEACH domain being required for this function. HIGHLIGHTS: The autophagic adaptor blue cheese is placed in an epistatic hierarchy, using pharmacological and genetic modulation of bchs- motor neuron degeneration. An intact BEACH isoform can promote autophagic proliferation, and in primary larval brain neurons Bchs shuttles to different components of the autophagy machinery, dependent on the stimulus.

6.
Glia ; 66(3): 562-575, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143372

RESUMO

Amyloid ß (Aß)-induced neuroinflammation plays an important part in Alzheimer's disease (AD). Emerging evidence supports a role for the transient receptor potential melastatin-related 2 (TRPM2) channel in Aß-induced neuroinflammation, but how Aß induces TRPM2 channel activation and this relates to neuroinflammation remained poorly understood. We investigated the mechanisms by which Aß42 activates the TRPM2 channel in microglial cells and the relationships to microglial activation and generation of tumor necrosis factor-α (TNF-α), a key cytokine implicated in AD. Exposure to 10-300 nM Aß42 induced concentration-dependent microglial activation and generation of TNF-α that were ablated by genetically deleting (TRPM2 knockout ;TRPM2-KO) or pharmacologically inhibiting the TRPM2 channel, revealing a critical role of this channel in Aß42 -induced microglial activation and generation of TNF-α. Mechanistically, Aß42 activated the TRPM2 channel via stimulating generation of reactive oxygen species (ROS) and activation of poly(ADPR) polymerase-1 (PARP-1). Aß42 -induced generation of ROS and activation of PARP-1 and TRPM2 channel were suppressed by inhibiting protein kinase C (PKC) and NADPH oxidases (NOX). Aß42 -induced activation of PARP-1 and TRPM2 channel was also reduced by inhibiting PYK2 and MEK/ERK. Aß42 -induced activation of PARP-1 was attenuated by TRPM2-KO and moreover, the remaining PARP-1 activity was eliminated by inhibiting PKC and NOX, but not PYK2 and MEK/ERK. Collectively, our results suggest that PKC/NOX-mediated generation of ROS and subsequent activation of PARP-1 play a role in Aß42 -induced TRPM2 channel activation and TRPM2-dependent activation of the PYK2/MEK/ERK signalling pathway acts as a positive feedback to further facilitate activation of PARP-1 and TRPM2 channel. These findings provide novel insights into the mechanisms underlying Aß-induced AD-related neuroinflammation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Canais de Cátion TRPM/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Necrose/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/genética
7.
Front Cell Neurosci ; 11: 241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848400

RESUMO

Afadin 6 (AF-6) is an F-actin binding multidomain-containing scaffolding protein that is known for its function in cell-cell adhesion. Interestingly, besides this well documented role, we recently found that AF-6 is a Parkin-interacting protein that augments Parkin/PINK1-mediated mitophagy. Notably, mutations in Parkin and PINK1 are causative of recessively inherited forms of Parkinson's disease (PD) and aberrant mitochondrial homeostasis is thought to underlie PD pathogenesis. Given the novel role of AF-6 in mitochondrial quality control (QC), we hypothesized that AF-6 overexpression may be beneficial to PD. Using the Drosophila melanogaster as a model system, we demonstrate in this study that transgenic overexpression of human AF-6 in parkin and also pink1 null flies rescues their mitochondrial pathology and associated locomotion deficit, which results in their improved survival over time. Similarly, AF-6 overexpression also ameliorates the pathological phenotypes in flies expressing the Leucine Rich Repeat Kinase 2 (LRRK2) G2019S mutant, a mutation that is associated with dominantly-inherited PD cases in humans. Conversely, when endogenous AF-6 expression is silenced, it aggravates the disease phenotypes of LRRK2 mutant flies. Aside from these genetic models, we also found that AF-6 overexpression is protective against the loss of dopaminergic neurons in flies treated with rotenone, a mitochondrial complex I inhibitor commonly used to generate animal models of PD. Taken together, our results demonstrate that AF-6 protects against dopaminergic dysfunction and mitochondrial abnormalities in multiple Drosophila models of PD, and suggest the therapeutic value of AF-6-related pathways in mitigating PD pathogenesis.

8.
Sci Rep ; 7: 45032, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322340

RESUMO

Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, all of which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death.


Assuntos
Microglia/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Zinco/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Células Cultivadas , Quinase 2 de Adesão Focal/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Microglia/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética
9.
Hum Mol Genet ; 25(23): 5069-5082, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798094

RESUMO

C9orf72 expansions are the most common genetic cause of FTLD and MND identified to date. Although being intronic, the expansion is translated into five different dipeptide repeat proteins (DPRs) that accumulate within patients' neurons. Attempts have been made to model DPRs in cell and animals. However, the majority of these use DPRs repeat numbers much shorter than those observed in patients. To address this we have generated a selection of DPR expression constructs with repeat numbers in excess of 1000 repeats, matching what is seen in patients. Small and larger DPRs produce inclusions with similar morphology but different cellular effects. We demonstrate a length dependent effect using electrophysiology with a phenotype only occurring with the longest DPRs. These data highlight the importance of using physiologically relevant repeat numbers when modelling DPRs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dipeptídeos/genética , Degeneração Lobar Frontotemporal/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72 , Expansão das Repetições de DNA/genética , Dipeptídeos/metabolismo , Fenômenos Eletrofisiológicos , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Íntrons/genética , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , Agregados Proteicos/fisiologia , Proteínas/metabolismo
10.
Stem Cells ; 34(8): 2102-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27038239

RESUMO

ATP is an extrinsic signal that can induce an increase in the cytosolic Ca(2+) level ([Ca(2+) ]c ) in mesenchymal stem cells (MSCs). However, the cognate intrinsic mechanisms underlying ATP-induced Ca(2+) signaling in MSCs is still contentious, and their importance in MSC migration remains unknown. In this study, we investigated the molecular mechanisms underlying ATP-induced Ca(2+) signaling and their roles in the regulation of cell migration in human dental pulp MSCs (hDP-MSCs). RT-PCR analysis of mRNA transcripts and interrogation of agonist-induced increases in the [Ca(2+) ]c support that P2X7, P2Y1 , and P2Y11 receptors participate in ATP-induced Ca(2+) signaling. In addition, following P2Y receptor activation, Ca(2+) release-activated Ca(2+) Orai1/Stim1 channel as a downstream mechanism also plays a significant role in ATP-induced Ca(2+) signaling. ATP concentration-dependently stimulates hDP-MSC migration. Pharmacological and genetic interventions of the expression or function of the P2X7, P2Y1 and P2Y11 receptors, and Orai1/Stim1 channel support critical involvement of these Ca(2+) signaling mechanisms in ATP-induced stimulation of hDP-MSC migration. Taken together, this study provide evidence to show that purinergic P2X7, P2Y1 , and P2Y11 receptors and store-operated Orai1/Stim1 channel represent important molecular mechanisms responsible for ATP-induced Ca(2+) signaling in hDP-MSCs and activation of these mechanisms stimulates hDP-MSC migration. Such information is useful in building a mechanistic understanding of MSC homing in tissue homeostasis and developing more efficient MSC-based therapeutic applications. Stem Cells 2016;34:2102-2114.


Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos/metabolismo , Adulto , Criança , Polpa Dentária/citologia , Espaço Extracelular/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 111(1): 521-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367083

RESUMO

P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.


Assuntos
Luz , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Compostos Azo/química , Eletrofisiologia , Regulação Neoplásica da Expressão Gênica , Ativação do Canal Iônico/fisiologia , Ativação do Canal Iônico/efeitos da radiação , Canais Iônicos/química , Íons , Ligantes , Microscopia Confocal , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Células PC12 , Ratos , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/efeitos da radiação , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/efeitos da radiação , Homologia de Sequência de Aminoácidos
12.
J Biol Chem ; 288(29): 20992-21000, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23740252

RESUMO

The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.


Assuntos
Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Purinérgicos P2X/metabolismo , Ácidos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Íons/farmacologia , Ligantes , Fenótipo , Potássio/farmacologia , Soluções
13.
BMC Genomics ; 12: 391, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21810278

RESUMO

BACKGROUND: Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. RESULTS: In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. CONCLUSIONS: The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Perfilação da Expressão Gênica , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Transcrição Gênica/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , Genômica , Genótipo , Humanos , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Tempo , Trofozoítos/citologia , Trofozoítos/efeitos dos fármacos , Trofozoítos/metabolismo
14.
Eur J Neurosci ; 34(2): 213-20, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21749490

RESUMO

P2X4 receptors are calcium-permeable cation channels gated by extracellular ATP. They are found close to subsynaptic sites on hippocampal CA1 neurons. We compared features of synaptic strengthening between wild-type and P2X4 knockout mice (21-26 days old). Potentiation evoked by a tetanic presynaptic stimulus (100 Hz, 1 s) paired with postsynaptic depolarization was less in P2X4(-/-) mice than in wild-type mice (230 vs. 50% potentiation). Paired-pulse ratios and the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) were not different between wild-type and knockout mice. Prior hyperpolarization (ten 3 s pulses to -120 mV at 0.17 Hz) potentiated the amplitude of spontaneous EPSCs in wild-type mice, but not in P2X4(-/-) mice; this potentiation was not affected by nifedipine, but was abolished by 10 mM 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) in the recording pipette. The amplitude of N-methyl-d-aspartate EPSCs (in 6-cyano-7-nitroquinoxaline-2,3-dione, 10 or 30 µm, at -100 mV) facilitated during 20 min recording in magnesium-free solution. In wild-type mice, this facilitation of the N-methyl-d-aspartate EPSC was reduced by about 50% by intracellular BAPTA (10 mM), ifenprodil (3 µm) or 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 µm). In P2X4(-/-) mice, the facilitation was much less, and was unaffected by intracellular BAPTA, ifenprodil (3 µm) or mitogen-activated protein (MAP) kinase inhibitor 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole (5 µm). This suggests that the absence of P2X4 receptors limits the incorporation of NR2B subunits into synaptic N-methyl-d-aspartate receptors.


Assuntos
Região CA1 Hipocampal/citologia , Neurônios/fisiologia , Receptores Purinérgicos P2X4/metabolismo , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X4/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia
15.
J Biol Chem ; 283(44): 29841-6, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18765669

RESUMO

P2X(1) receptors belong to a family of cation channels gated by extracellular ATP; they are found inter alia in smooth muscle, platelets, and immune cells. Suramin has been widely used as an antagonist at P2X receptors, and its analog 4,4',4'',4'''-[carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino))] tetrakis-benzene-1,3-disulfonic acid (NF449) is selective for the P2X(1) subtype. Human and mouse P2X(1) receptors were expressed in human embryonic kidney cells, and membrane currents evoked by ATP were recorded. ATP (10 nm to 100 microm) was applied only once to each cell, to avoid the profound desensitization exhibited by P2X(1) receptors. Suramin (10 microm) and NF449 (3-300 nM) effectively blocked the human receptor. Suramin had little effect on the mouse receptor. Suramin and NF449 are polysulfonates, with six and eight negative charges, respectively. We hypothesized that species differences might result from differences in positive residues presented by the large receptor ectodomain. Four lysines in the human sequence (Lys(111), Lys(127), Lys(138), and Lys(148)) were changed individually and together to their counterparts in the mouse sequence. The substitution K138E, either alone or together with K111Q, K127Q, and K148N, reduced the sensitivity to block by both suramin and NF449. Conversely, when lysine was introduced into the mouse receptor, the sensitivity to block by suramin and NF449 was much increased for E138K, but not for Q111K, Q127K, or N148K. The results explain the marked species difference in antagonist sensitivity and identify an ectodomain lysine residue that plays a key role in the binding of both suramin and NF449 to P2X(1) receptors.


Assuntos
Receptores Purinérgicos P2/química , Suramina/farmacologia , Sequência de Aminoácidos , Animais , Benzenossulfonatos/farmacologia , Linhagem Celular , Humanos , Rim/embriologia , Lisina/química , Camundongos , Dados de Sequência Molecular , Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X , Homologia de Sequência de Aminoácidos
16.
J Neurosci ; 26(35): 9006-9, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16943557

RESUMO

P2X4 purinergic receptors are calcium-permeable, ATP-activated ion channels. In the CA1 area of the hippocampus, they are located at the subsynaptic membrane somewhat peripherally to AMPA receptors. The possible role of P2X4 receptors has been difficult to elucidate because of the lack of selective antagonists. Here we report the generation of a P2X4 receptor knock-out mouse and show that long-term potentiation (LTP) at Schaffer collateral synapses is reduced relative to that in wild-type mice. Ivermectin, which selectively potentiates currents at P2X4, was found to increase LTP in wild-type mice but had no effect in P2X4 knock-out mice. We suggest that calcium entry through subsynaptic P2X4 receptors during high-frequency stimulation contributes to synaptic strengthening.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Purinérgicos P2/fisiologia , Sinapses/fisiologia , Animais , Imuno-Histoquímica , Ivermectina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X4 , Transmissão Sináptica/efeitos dos fármacos
17.
J Neurosci ; 24(28): 6307-14, 2004 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-15254086

RESUMO

P2X receptors are cationic-selective ion channels gated by extracellular ATP. There are seven subunits (P2X1-7), the first six of which are expressed throughout the peripheral and central nervous systems. P2X7 receptors are rapidly upregulated and activated as a result of inflammatory stimuli in immune cells, where they act not only as cationic channels but uniquely couple with rapid release of proinflammatory cytokines, cytoskeletal rearrangements, and apoptosis or necrotic cell death. The P2X7 receptor has been termed the cytolytic non-neuronal P2X receptor because it had not been detected in neurons until recently when it has been immunolocalized to several brain regions, particularly the hippocampus, and has been suggested to be involved in presynaptic modulation of transmitter release. Because its expression in brain neurons may have substantial functional implications, we have performed detailed immunocytochemical, immunoblot, and immunoprecipitation studies on brain and non-neuronal tissue using all currently available antibodies. We first examined rats, but staining patterns were inconsistent among antibodies; we therefore studied mice for which there are two P2X7 knock-out mice constructs available, one expressing the LacZ transgene. We found that P2X7 receptor protein is strongly and reliably detected in the submandibular gland and lung of wild-type mice but not in either of the P2X7-/- mice. However, we failed to find evidence for P2X7 receptor protein in hippocampal neurons or their input-output projections. Either the P2X7 protein in the hippocampus is below the limits of detection by the currently available methods or it is not present.


Assuntos
Química Encefálica , Proteínas do Tecido Nervoso/análise , Receptores Purinérgicos P2/análise , Animais , Anticorpos Monoclonais/imunologia , Cruzamentos Genéticos , Epitopos/imunologia , Hipocampo/química , Imunoprecipitação , Óperon Lac , Pulmão/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Neurônios/química , Especificidade de Órgãos , Ratos , Ratos Wistar , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/imunologia , Receptores Purinérgicos P2X7 , Glândula Submandibular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...