Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 224: 109222, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041511

RESUMO

Retinal pigment epithelium (RPE) cells, essential for preserving retina homeostasis, also contribute to the development of retina proliferative diseases, through their exacerbated migration, epithelial to mesenchymal transition (EMT) and inflammatory response. Uncovering the mechanisms inducing these changes is crucial for designing effective treatments for these pathologies. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are bioactive sphingolipids that promote migration and inflammation in several cell types; we recently established that they stimulate the migration of retina Müller glial cells (Simón et al., 2015; Vera et al., 2021). We here analyzed whether S1P and C1P regulate migration, inflammation and EMT in RPE cells. We cultured two human RPE cell lines, ARPE-19 and D407 cells, and supplemented them with either 5 µM S1P or 10 µM C1P, or their vehicles, for 24 h. Analysis of cell migration by the scratch wound assay showed that S1P addition significantly enhanced migration in both cell lines. Pre-treatment with W146 and BML-241, antagonists for S1P receptor 1 (S1P1) and 3 (S1P3), respectively, blocked exogenous S1P-induced migration. Inhibiting sphingosine kinase 1 (SphK1), the enzyme involved in S1P synthesis, significantly reduced cell migration and exogenous S1P only partially restored it. Addition of C1P markedly stimulated cell migration. Whereas inhibiting C1P synthesis did not affect C1P-induced migration, inhibiting S1P synthesis strikingly decreased it; noteworthy, addition of C1P promoted the transcription of SphK1. These results suggest that S1P and C1P stimulate RPE cell migration and their effect requires S1P endogenous synthesis. Both S1P and C1P increase the transcription of pro-inflammatory cytokines IL-6 and IL-8, and of EMT marker α-smooth muscle actin (α-SMA) in ARPE-19 cells. Collectively, our results suggest new roles for S1P and C1P in the regulation of RPE cell migration and inflammation; since the deregulation of sphingolipid metabolism is involved in several proliferative retinopathies, targeting their metabolism might provide new tools for treating these pathologies.


Assuntos
Actinas , Epitélio Pigmentado da Retina , Humanos , Receptores de Esfingosina-1-Fosfato , Epitélio Pigmentado da Retina/metabolismo , Transição Epitelial-Mesenquimal , Interleucina-6 , Interleucina-8 , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Ceramidas/farmacologia , Ceramidas/metabolismo , Inflamação/metabolismo , Fosfatos
2.
J Lipid Res ; 62: 100037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32948663

RESUMO

Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.


Assuntos
Esfingolipídeos
3.
Exp Eye Res ; 202: 108359, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197453

RESUMO

Müller glial cells, the major glial cell type in the retina, are activated by most retina injuries, leading to an increased proliferation and migration that contributes to visual dysfunction. The molecular cues involved in these processes are still ill defined. We demonstrated that sphingosine-1-phosphate (S1P), a bioactive sphingolipid, promotes glial migration. We now investigated whether ceramide-1-phosphate (C1P), also a bioactive sphingolipid, was involved in Müller glial cell migration. We evaluated cell migration in primary Müller glial cultures, prepared from newborn rat retinas, by the scratch wound assay. Addition of either 10 µM C8-ceramide-1-phosphate (C8-C1P) or 5 µM C16-C1P (a long chain, natural C1P) stimulated glial migration. Inhibiting PI3K almost completely blocked C8-C1P-elicited migration whereas inhibition of ERK1-2/MAPK pathway diminished it and p38MAPK inhibition did not affect it. Pre-treatment with a cytoplasmic phospholipase A2 (cPLA2) inhibitor markedly reduced C8-C1P-induced migration. Inhibiting ceramide kinase (CerK), the enzyme catalyzing C1P synthesis, partially decreased glial migration. Combined addition of S1P and C8-C1P promoted glial migration to the same extent as when they were added separately, suggesting they converge on their downstream signaling to stimulate Müller glia migration. These results suggest that C1P addition stimulated migration of glial Müller cells, promoting the activation of cPLA2, and the PI3K and ERK/MAPK pathways. They also suggest that CerK-dependent C1P synthesis was one of the factors contributing to glial migration, thus uncovering a novel role for C1P in controlling glial motility.


Assuntos
Ceramidas/farmacologia , Células Ependimogliais/citologia , Células Ganglionares da Retina/citologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Modelos Animais , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais
4.
Front Cell Neurosci ; 13: 246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244608

RESUMO

The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.

5.
Mol Neurobiol ; 56(7): 4760-4777, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30387075

RESUMO

Ceramide (Cer) has a key role inducing cell death and has been proposed as a messenger in photoreceptor cell death in the retina. Here, we explored the pathways induced by C2-acetylsphingosine (C2-Cer), a cell-permeable Cer, to elicit photoreceptor death. Treating pure retina neuronal cultures with 10 µM C2-Cer for 6 h selectively induced photoreceptor death, decreasing mitochondrial membrane potential and increasing the formation of reactive oxygen species (ROS). In contrast, amacrine neurons preserved their viability. Noteworthy, the amount of TUNEL-labeled cells and photoreceptors expressing cleaved caspase-3 remained constant and pretreatment with a pan-caspase inhibitor did not prevent C2-Cer-induced death. C2-Cer provoked polyADP ribosyl polymerase-1 (PARP-1) overactivation. Inhibiting PARP-1 decreased C2-Cer-induced photoreceptor death; C2-Cer increased polyADP ribose polymer (PAR) levels and induced the translocation of apoptosis inducing factor (AIF) from mitochondria to photoreceptor nuclei, which was prevented by PARP-1 inhibition. Pretreatment with a calpain and cathepsin inhibitor and with a calpain inhibitor reduced photoreceptor death, whereas selective cathepsin inhibitors granted no protection. Combined pretreatment with a PARP-1 and a calpain inhibitor evidenced the same protection as each inhibitor by itself. Neither autophagy nor necroptosis was involved in C2-Cer-elicited death; no increase in LDH release was observed upon C2-Cer treatment and pretreatment with inhibitors of necroptosis and autophagy did not rescue photoreceptors. These results suggest that C2-Cer induced photoreceptor death by a novel, caspase-independent mechanism, involving activation of PARP-1, decline of mitochondrial membrane potential, calpain activation, and AIF translocation, all of which are biochemical features of parthanatos.


Assuntos
Ceramidas/farmacologia , Parthanatos/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Animais , Fator de Indução de Apoptose/metabolismo , Calpaína/metabolismo , Caspases/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
6.
Invest Ophthalmol Vis Sci ; 54(5): 3143-56, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23580485

RESUMO

PURPOSE: Retinoic acid (RA) has a critical role during development of the retina. We investigated RA effects on photoreceptor apoptosis and differentiation, and the intracellular pathways involved. METHODS: Rat retinal neuronal cultures were supplemented with RA with or without docosahexaenoic acid (DHA), a photoreceptor survival factor, and photoreceptor apoptosis and differentiation were evaluated at different times of development. To investigate the intracellular pathways activated by RA, the levels of phosphorylated (P) ERK and P-p38 in cultures with or without RA, and the effect of pretreatment with SB203580, a p38 specific inhibitor, on apoptosis and differentiation were evaluated. RESULTS: RA addition at day 0, when cells still were proliferating, selectively increased apoptosis in photoreceptors, whereas addition at day 2 no longer caused cell death. RA stimulated opsin and peripherin expression, and neurite outgrowth regardless of the time of development. Addition of RA at day 0, but not at day 2, rapidly increased P-p38 levels, but did not affect P-ERK levels. p38 inhibition completely prevented RA-induced apoptosis, and partially decreased differentiation. DHA prevented apoptosis and additively increased differentiation, without affecting RA activation of p38. CONCLUSIONS: Our results show that RA activation of the p38 intracellular pathway was essential for its early induction of apoptosis and partially responsible for promoting differentiation. DHA prevention of this apoptosis suggests that RA effects during early development must be counterbalanced by survival factors to prevent photoreceptor death, in an interplay that might help to establish the final number of photoreceptors.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Tretinoína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Microscopia Confocal , Microscopia de Fluorescência , Fosforilação , Células Fotorreceptoras de Vertebrados/enzimologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Neurônios Retinianos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
J Neurosci Res ; 86(7): 1459-71, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18189319

RESUMO

The finding that Müller cells have stem cell properties in the retina has led to the hypothesis that they might be a source for replacing neurons lost in neurodegenerative diseases. However, utilization of Müller cells for regenerative purposes in the mammalian eye still requires identifying those factors that regulate their multipotentiality and proliferation. In addition, because Pax6 expression is indispensable for eye development, its regulation would be required during regeneration. In the present study we investigated the regulation of cell-cycle progression and Pax6 expression in pure Müller glial cell cultures and neuroglial cocultures from rat retinas. At early times in vitro, glial cells showed high expression of Pax6 and of nestin, a stem cell marker, and of markers of cell-cycle progression; expression of these markers decreased during development in parallel with increased glial differentiation. The addition of glial-derived neurotrophic factor, basic fibroblast growth factor, and insulin restored proliferation and also Pax6 and nestin expression in glial cells. Noteworthy, in neuroglial cocultures Müller cells retained Pax6 expression for longer periods, and, in turn, neuronal progenitors preserved their proliferative potential for several days in vitro. This suggests that neuroglial interactions mutually regulate their mitogenic capacity. In addition, in glial secondary cultures incubated with insulin, many neuroblast-like cells expressed the neuronal marker NeuN. Our results suggest that the proliferative capacity and the features of eye stem cells of Müller glial cells are regulated by molecular and cellular factors, which might then provide potential tools for manipulating retinal regeneration.


Assuntos
Ciclo Celular/fisiologia , Proteínas do Olho/metabolismo , Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Neurônios/fisiologia , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/fisiologia , Albinismo , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Proteínas do Olho/genética , Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Marcação In Situ das Extremidades Cortadas/métodos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Ratos , Proteínas Repressoras/genética , Retina/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...