Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456569

RESUMO

Polymer-liposome complexes (PLCs) can be efficiently applied for the treatment and/or diagnosis of several types of diseases, such as cancerous, dermatological, neurological, ophthalmic and orthopedic. In this work, temperature-/pH-sensitive PLC-based systems for controlled release were developed and characterized. The selected hydrophilic polymeric setup consists of copolymers of Pluronic®-poly(acrylic acid) (PLU-PAA) and Pluronic®-poly(N,N-dimethylaminoethyl methacrylate) (PLU-PD) synthesized by atom transfer radical polymerization (ATRP). The copolymers were incorporated into liposomes formulated from soybean lecithin, with different copolymer/phospholipid ratios (2.5, 5 and 10%). PLCs were characterized by evaluating their particle size, polydispersity, surface charge, capacity of release and encapsulation efficiency. Their cytotoxic potential was assessed by determining the viability of human epithelial cells exposed to them. The results showed that the incorporation of the synthesized copolymers positively contributed to the stabilization of the liposomes. The main accomplishments of this work were the innovative synthesis of PLU-PD and PLU-PAA by ATRP, and the liposome stabilization by their incorporation. The formulated PLCs exhibited relevant characteristics, notably stimuli-responsive attributes upon slight changes in pH and/or temperature, with proven absence of cellular toxicity, which could be of interest for the treatment or diagnosis of all diseases that cause some particular pH/temperature change in the target area.

2.
ACS Appl Mater Interfaces ; 13(16): 19521-19529, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856765

RESUMO

Adhesion is caused by molecular interactions that only take place if the surfaces are in nanoscale contact (NSC); i.e., the distance between the surfaces is in the range of 0.1-0.4 nm. However, there are several difficulties measuring the NSC between surfaces, mainly because regions that appear to be in full contact at low magnification may show no NSC when observed at higher magnifications. Thus, the measurement area of NSC is very small with imaging techniques, and an experimental technique to evaluate NSC for large contact areas has not been available thus far. Here, we are proposing Förster resonance energy transfer (FRET) spectroscopy/microscopy for this purpose. We demonstrate that NSC in a distance range of 1-10 nm can be evaluated. Our experiments reveal that, for thin films pressed under different loads, NSC increases with the applied pressure, resulting in a higher FRET signal and a corresponding increase in adhesion force/energy when separating the films. Furthermore, we show that local variations in molecular contact can be visualized with FRET microscopy. Thus, we are introducing a spectroscopic technique for quantification (FRET spectroscopy) and imaging (FRET microscopy) of NSC between surfaces, demonstrated here for the application of surface adhesion. This could be of interest for all fields where adhesion or nanoscale surface contact are playing a role, for example, soft matter, biological materials, and polymers, but also engineering applications, like tribology, adhesives, and sealants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...