Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(8): 2038-2058, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633049

RESUMO

In this study, hybrid bio-nanoporous peptides loaded onto poly(N-isopropylacrylamide-co-butylacrylate) (pNIPAM-co-BA) coatings were designed and obtained via matrix-assisted pulsed laser evaporation (MAPLE) technique. The incorporation of cationic peptides magainin (MG) and melittin (Mel) and their combination was tailored to target synergistic anticancer and antibacterial activities with low toxicity on normal mammalian cells. Atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy as well as contact angle and surface energy measurements revealed the successful and functional incorporation of both the peptides within porous polymeric nanolayers as well as surface modifications (i.e. variation in the pore size diameter, surface roughness, and wettability) after Mel, MG or Mel-MG incorporation compared to pNIPAM-co-BA. In vitro testing revealed the impairment of biofilm formation on all the hybrid coatings while testing with S. aureus, E. coli and P. aeruginosa. Moreover, MG was shown to modulate the effect of Mel in the combined Mel-MG extract formulation released via pNIPAM-platforms, thus significantly reducing cancer cell proliferation through apoptosis/necrosis as revealed by flow cytometry analysis performed in vitro on HEK293T, A375, B16F1 and B16F10 cells. To the best of our knowledge, Mel-MG combination entrapped in the pNIPAM-co-BA copolymer has not yet been reported as a new promising candidate with anticancer and antibacterial properties for improved utility in the biomedical field. Mel-MG incorporation compared to pNIPAM-co-BA in in vitro testing revealed the impairment of biofilm formation in all the hybrid formulations.

2.
J Biol Chem ; 299(8): 105024, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423302

RESUMO

Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Doenças de Niemann-Pick , Humanos , Melanossomas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Colesterol/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
3.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838989

RESUMO

In this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The Fe3O4-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. XPS, MÓ§ssbauer spectroscopy and SQUID measurements were also performed to determine the electronic and magnetic properties of the Fe3O4-L-Cys-Dox nanoparticles. Moreover, by means of a FO-SPR sensor, we evidenced and confirmed the binding of Dox to L-Cys. Biological tests on mouse (B16F10) and human (A375) metastatic melanoma cells evidenced the internalization of magnetic nanoparticles delivering Dox. Half maximum inhibitory concentration IC50 values of Fe3O4-L-Cys-Dox were determined for both cell lines: 4.26 µg/mL for A375 and 2.74 µg/mL for B16F10, as compared to 60.74 and 98.75 µg/mL, respectively, for unloaded controls. Incubation of cells with Fe3O4-L-Cys-Dox modulated MAPK signaling pathway activity 3 h post-treatment and produced cell cycle arrest and increased apoptosis by 48 h. We show that within the first 2 h of incubation in physiological (pH = 7.4) media, ~10-15 µM Dox/h was released from a 200 µg/mL Fe3O4-L-Cys-Dox solution, as compared to double upon incubation in citrate solution (pH = 3), which resembles acidic environment conditions. Our results highlight the potential of Fe3O4-L-Cys-Dox NPs as efficient drug delivery vehicles in melanoma therapy.

4.
Cells ; 11(11)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681474

RESUMO

Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5'-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2's unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with ß-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.


Assuntos
Neoplasias , Proteína 2 Glutamina gama-Glutamiltransferase , Transição Epitelial-Mesenquimal , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato , Humanos , Neoplasias/patologia , Transglutaminases/metabolismo
5.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34593619

RESUMO

BACKGROUND: Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS: Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS: We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS: Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.


Assuntos
Neoplasias Ovarianas/genética , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fosforilação
6.
Materials (Basel) ; 12(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635291

RESUMO

The potential of mesenchymal stem cells (MSCs) for implantology and cell-based therapy represents one of the major ongoing research subjects within the last decades. In bone regeneration applications, the various environmental factors including bioactive compounds such as growth factors, chemicals and physical characteristics of biointerfaces are the key factors in controlling and regulating osteogenic differentiation from MSCs. In our study, we have investigated the influence of Lactoferrin (Lf) and Hydroxyapatite (HA) embedded within a biodegradable PEG-PCL copolymer on the osteogenic fate of MSCs, previous studies revealing an anti-inflammatory potential of the coating and osteogenic differentiation of murine pre-osteoblast cells. The copolymer matrix was obtained by the Matrix Assisted Pulsed Laser Evaporation technique (MAPLE) and the composite layers containing the bioactive compounds (Lf, HA, and Lf-HA) were characterised by Scanning Electron Microscopy and Atomic Force Microscopy. Energy-dispersive X-ray spectroscopy contact angle and surface energy of the analysed coatings were also measured. The characteristics of the composite surfaces were correlated with the viability, proliferation, and morphology of human MSCs (hMSCs) cultured on the developed coatings. All surfaces were found not to exhibit toxicity, as confirmed by the LIVE/DEAD assay. The Lf-HA composite exhibited an increase in osteogenic differentiation of hMSCs, results supported by alkaline phosphatase and mineralisation assays. This is the first report of the capacity of biodegradable composite layers containing Lf to induce osteogenic differentiation from hMSCs, a property revealing its potential for application in bone regeneration.

7.
Mol Cancer Ther ; 18(6): 1057-1068, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31015308

RESUMO

Tissue transglutaminase (TG2) is a multifunctional protein with enzymatic, GTP-ase, and scaffold properties. TG2 interacts with fibronectin (FN) through its N-terminus domain, stabilizing integrin complexes, which regulate cell adhesion to the matrix. Through this mechanism, TG2 participates in key steps involved in metastasis in ovarian and other cancers. High-throughput screening identified several small molecule inhibitors (SMI) for the TG2/FN complex. Rational medicinal chemistry optimization of the hit compound (TG53) led to second-generation analogues (MT1-6). ELISA demonstrated that these analogues blocked TG2/FN interaction, and bio-layer interferometry (BLI) showed that the SMIs bound to TG2. The compounds also potently inhibited cancer cell adhesion to FN and decreased outside-in signaling mediated through the focal adhesion kinase. Blockade of TG2/FN interaction by the small molecules caused membrane ruffling, delaying the formation of stable focal contacts and mature adhesions points and disrupted organization of the actin cytoskeleton. In an in vivo model measuring intraperitoneal dissemination, MT4 and MT6 inhibited the adhesion of ovarian cancer cells to the peritoneum. Pretreatment with MT4 also sensitized ovarian cancer cells to paclitaxel. The data support continued optimization of the new class of SMIs that block the TG2/FN complex at the interface between cancer cells and the tumor niche.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Ovarianas/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transglutaminases/metabolismo , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Paclitaxel/uso terapêutico , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Stem Cell Res Ther ; 12(2): 139-144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26496887

RESUMO

Understanding the spatiotemporal dynamics of stem cell fate regulation is important for both fundamental biology and for directing the generation of a specific phenotype during the fabrication of tissue engineering materials. Recent findings revealed aspects of extracellular signals transduction by mesenchymal stem cells that are further integrated to modulate their lineage specification. This review focuses on recent developments in the field of nanobiomaterials design and fabrication for use in research and therapy of bone tissue. Also, new methods of assessment of stem cell multipotency or differentiated phenotype developed for clinical quality control applications are described. Materials engineered for understanding fundamental mechanisms of stem cell interaction with substrates are highlighted as key studies to drive advances in bone implants design. The use of polymers with defined biomechanical and topographical features to mimic the extracellular matrix biochemistry or biophysical cues is discussed. Bioengineered scaffolds able to induce osteogenic fate of bone marrow-derived mesenchymal stem cells in the absence of differentiation factors are successful models for potential development of implant biomaterials with enhanced osseointegration capacity and decreased soft tissue encapsulation.


Assuntos
Osso e Ossos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais , Alicerces Teciduais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Osso e Ossos/lesões , Osso e Ossos/cirurgia , Interface Osso-Implante , Diferenciação Celular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Polímeros/química , Polímeros/farmacologia , Engenharia Tecidual
9.
Stem Cell Res Ther ; 4(4): 81, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23845279

RESUMO

INTRODUCTION: Human Wharton's jelly (WJ) has become a preferred source of mesenchymal stem cells (MSCs) whose clinical applications are limited by the use of adequate xeno-free (XF), in vitro manipulation conditions. Therefore, the objective of our study was to characterize WJ-derived MSCs (WJ-MSCs), isolated by different methods and cultured in a commercially available, MSC XF medium, not least of all by investigating their endothelial differentiation capacity. METHODS: WJ explants and enzymatically dissociated WJ cells were cultured in a defined, XF medium for MSCs. Adherent cells at passages 2 and 5 were characterized as MSCs by flow cytometry, MTT, real-time quantitative reverse transcription PCR, and functional multipotent differentiation assays. The endothelial differentiation capacity of MSCs isolated and expanded until passage 2 in the MSC XF medium, and then subcultured for five passages in a commercially available endothelial growth medium (group A), was assessed over serial passages, as compared to adherent WJ-derived cells isolated and expanded for five consecutive passages in the endothelial medium (group B). RESULTS: The MSC phenotype of WJ explant- and pellet-derived cells, isolated and expanded in the MSC XF medium, was proven based on the expression of CD44/CD73/CD90/CD105 surface markers and osteo-/adipo-/chondrogenic multipotent differentiation potential, which differed according to the isolation method and/or passage number. Upon exposure to endothelial differentiation cues, cells belonging to group A did not exhibit endothelial cell characteristics over serial passages; by contrast, WJ pellet-derived cells belonging to group B expressed endothelial characteristics at gene, protein and functional levels, potentially due to culture conditions favoring the isolation of other stem/progenitor cell types than MSCs, able to give rise to an endothelial progeny. CONCLUSIONS: The use of defined, MSC XF media for isolation and expansion of human WJ-MSCs is a prerequisite for the establishment of their real endothelial differentiation capacity, as candidates for clinical therapy applications. Thus, the standardization of WJ-MSCs isolation and culture expansion techniques in defined, MSC XF media, for their accurate characterization, would be a priority in the stem cell research field.


Assuntos
Técnicas de Cultura de Células/métodos , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Diferenciação Celular , Proliferação de Células , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...