Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 9(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34564371

RESUMO

Glyphosate (G)-based herbicidal formulations, such as the most commonly used one, Roundup (R), are major pesticides used worldwide on food and feed. Pregnant women may be frequently exposed to R compounds. These are composed of G, which is declared as the active principle, and other products contained in formulations, named formulants, which have been declared as inerts and diluents by the manufacturers. These formulants have, in fact, been demonstrated to be much more toxic than G, in particular to placental and embryonic human cells. In this work, we thus compared the effect of G and a GT+ formulation named R, using placental perfusion ex vivo. R, but not G alone, was demonstrated to alter the placental permeability of a known small model molecule, antipyrine. Similar results were observed for the fetal venous flow rate. The transfer of G alone increases with time, but is significantly decreased in presence of its formulants. The perfusion of R provokes a destruction of fetal vessels, as demonstrated by immunohistochemistry. Formulants obviously alter the fetal-placental circulation and placental integrity according to time of exposure. Therefore, G does not appear to be the main toxic agent of R. Formulants, although undeclared, include polyoxyethanolamines, PAHs, or heavy metals, and may be responsible for this toxicity. These compounds are also present in other pesticides. The progressive blood flow reduction due to the toxic compounds of formulations may diminish the nutrient supply to the fetus, alter the development, and may enhance the poisoning effects. Although these are preliminary results, they could at least partially explain some adverse pregnancy outcomes in mothers exposed to pesticides or other environmental pollutants. The debate on glyphosate alone is proven insufficient for the understanding of the toxicity.

2.
Sci Total Environ ; 790: 148125, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380275

RESUMO

Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.


Assuntos
Placenta , Frutos do Mar , Animais , Encéfalo , Feminino , Humanos , Gravidez , Ratos , Alimentos Marinhos , Distribuição Tecidual
3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809345

RESUMO

Physiological oxygen tension rises dramatically in the placenta between 8 and 14 weeks of gestation. Abnormalities in this period can lead to gestational diseases, whose underlying mechanisms remain unclear. We explored the changes at mRNA level by comparing the transcriptomes of human placentas at 8-10 gestational weeks and 12-14 gestational weeks. A total of 20 samples were collected and divided equally into four groups based on sex and age. Cytotrophoblasts were isolated and sequenced using RNAseq. Key genes were identified using two different methods: DESeq2 and weighted gene co-expression network analysis (WGCNA). We also constructed a local database of known targets of hypoxia-inducible factor (HIF) subunits, alpha and beta, to investigate expression patterns likely linked with changes in oxygen. Patterns of gene enrichment in and among the four groups were analyzed based on annotations of gene ontology (GO) and KEGG pathways. We characterized the similarities and differences between the enrichment patterns revealed by the two methods and the two conditions (age and sex), as well as those associated with HIF targets. Our results provide a broad perspective of the processes that are active in cytotrophoblasts during the rise in physiological oxygen, which should benefit efforts to discover possible drug-targeted genes or pathways in the human placenta.


Assuntos
Adaptação Fisiológica/genética , Pré-Eclâmpsia/genética , Primeiro Trimestre da Gravidez/genética , Transcriptoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular/genética , Feminino , Humanos , Oxigênio/metabolismo , Placenta/metabolismo , Placenta/patologia , Placentação/genética , Pré-Eclâmpsia/patologia , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA-Seq
5.
ACS Chem Neurosci ; 10(7): 3307-3317, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31184110

RESUMO

Human epidemiological and animal-model studies suggest that separate exposure to stress or serotonin-selective reuptake inhibitor (SSRI) antidepressants during pregnancy increases risks for neurodevelopmental disorders in offspring. Yet, little is known about the combined effects of maternal stress and SSRIs with regard to brain development in utero. We found that the placenta is highly permeable to the commonly prescribed SSRI (±)-citalopram (CIT) in humans and mice, allowing rapid exposure of the fetal brain to this drug. We investigated the effects of maternal chronic unpredictable stress in mice with or without maternal oral administration of CIT from embryonic day (E)8 to E17. We assessed fetal brain development using magnetic resonance imaging and quantified changes in serotonergic, thalamocortical, and cortical development. In utero exposure to maternal stress did not affect overall fetal brain growth. However, serotonin tissue content in the fetal forebrain was increased in association with maternal stress; this increase was reversed by maternal CIT. In utero exposure to stress increased the numbers of deep-layer neurons in specific cortical regions, whereas CIT increased overall cell numbers without changing the proportions of layer-specific neurons to offset the effects of stress on deep-layer cortical development. These findings suggest that stress and SSRI exposure in utero differentially impact serotonin-dependent fetal neurodevelopment such that CIT reverses key effects of maternal gestational stress on offspring brain development.


Assuntos
Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Desenvolvimento Fetal/efeitos dos fármacos , Exposição Materna , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/fisiologia , Imageamento por Ressonância Magnética , Camundongos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Serotonina/metabolismo
6.
Int J Pharm ; 532(2): 729-737, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28757257

RESUMO

Uptake and passage of nanocarriers through the placenta are critical information to develop new therapeutic approaches during pregnancy. In order to assess nanocarriers transplacental passage and penetration into the placenta, we studied and optimized two ex-vivo human models: the dually perfused placenta and the placenta explants. Doubly labelled PEGylated liposomes were used as models to provide data on the penetration and transplacental passage of drugs and liposomes. A HPLC method was set-up to quantify both carboxyfluorescein and lipid-rhodamine. Transplacental passage was then quantified using HPLC and placental penetration was assessed using spinning disk microscopy. We found a similar transplacental passage rate for both free and encapsulated carboxyfluorescein as well as a homogeneous fluorescence intensity in the outer cell layer of the placental villous, the syncytiotrophoblast, and the mesenchyma. Besides, liposome-rhodamine was not detected in the fetal circulation. The absence of transplacental passage of PEGylated liposomes is also supported by their detection in the sole syncytiotrophoblast. The combination of two ex-vivo models and the monitoring of both the drug and the carrier provided consistent and complementary information. Overall, we suggest combining the perfused human placenta and the human explants villous models to evaluate nanocarriers designed for treatments during pregnancy.


Assuntos
Placenta/metabolismo , Polietilenoglicóis/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Fluoresceínas/administração & dosagem , Fluoresceínas/química , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Humanos , Lipossomos , Troca Materno-Fetal , Perfusão , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Gravidez , Rodaminas/administração & dosagem , Rodaminas/química
7.
PLoS One ; 10(7): e0133506, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186596

RESUMO

The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST), which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT). Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2). Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac), an antioxidant.


Assuntos
Diferenciação Celular , Formaldeído/toxicidade , Hormônios Placentários/metabolismo , Trofoblastos/efeitos dos fármacos , Adulto , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Células Cultivadas , Feminino , Humanos , Troca Materno-Fetal , Antígenos de Histocompatibilidade Menor , Estresse Oxidativo , Circulação Placentária , Gravidez , Trofoblastos/citologia , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA