Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228135

RESUMO

Outbreaks of whitefly, Bemisia tabaci species in East and Central Africa, have become increasingly prevalent during the previous 25 years and are responsible for driving the spread of plant-virus diseases, such as cassava mosaic disease and cassava brown steak disease. Epidemics of these diseases have expanded their ranges over the same period, spreading from Uganda into other sub-Saharan African countries. It was hypothesised that a highly abundant 'invader' population of B. tabaci was responsible for spreading these diseases from Uganda to neighbouring countries and potentially hybridising with the resident cassava B. tabaci populations. Here, we test this hypothesis by investigating the molecular identities of the highly abundant cassava B. tabaci populations from their supposed origin in Uganda, to the northern, central, eastern and coastal regions of Tanzania. Partial mitochondrial cytochrome oxidase I (mtCOI) barcoding sequences and nuclear microsatellite markers were used to analyse the population genetic diversity and structure of 2734 B. tabaci collected from both countries and in different agroecological zones. The results revealed that: (i) the putative SSA1 species is structured according to countries, so differ between them. (ii) Restricted gene flow occurred between SSA1-SG3 and both other SSA1 subgroups (SG1 and SG2), even in sympatry, demonstrating strong barriers to hybridization between those genotypes. (iii) Not only B. tabaci SSA1-(SG1 and SG2) was found in highly abundant (outbreak) numbers, but B. tabaci SSA1-SG3 and the Indian Ocean (IO) species were also recorded in high numbers in several sites in Tanzania. (iv) The SSA1-(SG1 and SG2) species was distributed in both countries, but in Tanzania, the B. tabaci IO and SSA1-SG3 species predominated. These data confirm that multiple, local Tanzanian B. tabaci species produce highly abundant populations, independent of the spread of the putative invasive B. tabaci SSA1-(SG1 and SG2) populations.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Filogenia , Tanzânia , África Central , Variação Genética
2.
PLoS One ; 17(10): e0276993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315574

RESUMO

Since several years, whiteflies of the species complex of Bemisia tabaci (Gennadius) are causing several damages on vegetable crops in Côte d'Ivoire. These sap-sucking insects are the main vector of many viruses on tomato and several species of this complex have developed resistances against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops in Côte d'Ivoire. Here, we investigated the species diversity and their genetic diversity and structuring on samples from vegetable crops in the major tomato production areas of Côte d'Ivoire. To assess this diversity, 535 whitefly samples from different localities and plant species were collected and analysed with nuclear (microsatellite) and mitochondrial (mtCOI) markers. In each site, and ecological data were recorded, including whiteflies abundance and plant species colonised by B. tabaci. The analysis of mtCOI sequences of whiteflies indicated the presence of four cryptic species on tomato and associated crops in Côte d'Ivoire. These were MED ASL, MED Q1, SSA 1 and SSA3. The MED ASL species dominated over all samples in the different regions and plant species. One haplotype of MED ASL out of the 15 identified predominated on most plant species and most sites. These results suggested that MED ASL is probably the main phytovirus vector in the Ivorian vegetable cropping areas. In contrast, only five haplotypes of MED Q1 were identified on vegetables but in the cotton-growing areas of the country. Its low prevalence, low nuclear and mitochondrial diversity might indicate a recent invasion of this species on vegetable crops in Côte d'Ivoire. The Bayesian nuclear analysis indicated the presence of hybrid genotypes between the two main species MED ASL and MED Q1, however in low prevalence (10%). All these results highlight the need to maintain whitefly populations monitoring for a more effective management in Côte d'Ivoire.


Assuntos
Hemípteros , Solanum lycopersicum , Animais , Hemípteros/genética , Verduras , Côte d'Ivoire , Teorema de Bayes , Produtos Agrícolas , Solanum lycopersicum/genética , Variação Genética
3.
Sci Rep ; 12(1): 8448, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589927

RESUMO

The invasion success of a species in an agrosystem is greatly influenced by environmental factors such as the use of insecticides, by the intrinsic evolutionary capabilities of the species, and also by interactions with resident species. On the island of La Réunion, the successive invasions of MEAM1 and MED whitefly species over the last 20 years have not only led an increased use of insecticides, but have also challenged the resident IO species. To trace the evolution of the 3 species, and the distribution of the kdr mutation (resistance to pyrethroid) in the para-type voltage-gated sodium channel, we genotyped 41 populations (using neutral nuclear markers) and look at the prevalence of the kdr allele. MEAM1 was predominantly present in agrosystems showing quasi fixation of the resistant kdr allele whereas IO was mainly in natural environments and did not have any resistant allele. Hybridization between the two former species was detected in low frequency but has not led to introgression of resistant alleles in the resident species so far. MED showed a limited distribution in agrosystems but all individuals displayed a resistant allele. These highly contrasting patterns of distribution and resistant mutations between invasive and resident whitefly species are further discussed.


Assuntos
Hemípteros , Inseticidas , Piretrinas , Alelos , Animais , Hemípteros/genética , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia
4.
PLoS One ; 15(11): e0242053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211716

RESUMO

The previous genetic characterization of the honeybee population of Mauritius Island (Indian Ocean) revealed an ongoing process of hybridization between the first established African subspecies Apis mellifera unicolor and recently imported European subspecies (A. m. ligustica, A. m. carnica and A. m. mellifera). This context offers the rare opportunity to explore the influence of hybridization between African and European honeybees on phenotypic traits out of the case largely studied of the Africanized honeybee (hybrid between A. m. scutellata from South Africa and European subspecies). We thus conducted geometric morphometric analyses on forewings of 283 workers genetically characterized at 14 microsatellite loci to evaluate (1) if the morphological variability coincides well with the neutral genetic variability, (2) if hybrids exhibited rather parental, intermediate or transgressive traits, and (3) to test if fluctuating asymmetry (FA) of size and shape, as a measure of developmental stability, was elevated in hybrids (due to genetic stress) and/or European bees (due to unsuitable environment) compared to African bees. A strong concordance was found between morphological variability and neutral genetic variability, especially for wing shape, based on partial least-square analyses (PLS). However, on average, the morphology of hybrids was more similar to the African bees, potentially reflecting the dynamics and direction of introgression. Significant FA for wing size as well as wing shape was detected, suggesting the overall presence of stress during the development of the studied individuals. In contrast, the asymmetry levels do not differ according to the ancestry (African, European or hybrid) of the individuals. Therefore, if ongoing hybridization contributed to increasing the genetic and phenotypic diversity of the populations and influences its adaptive potential, developmental stressors could not be identified and their evolutionary consequences remain uncertain.


Assuntos
Abelhas/anatomia & histologia , Abelhas/genética , Variação Genética , Repetições de Microssatélites , Animais , Abelhas/classificação , Europa (Continente) , Evolução Molecular , Hibridização Genética , Maurício , Fenótipo , Filogenia , Filogeografia , Locos de Características Quantitativas , Clima Tropical , Asas de Animais/anatomia & histologia
5.
Pest Manag Sci ; 76(4): 1235-1244, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31583807

RESUMO

BACKGROUND: Global and intensive use of insecticides has led to the emergence and rapid evolution of resistance in the major pest Bemisia tabaci (Gennadius). In La Réunion, an island of the South West Indian Ocean, three whitefly species coexist, two of which are predominant, the indigenous Indian Ocean (IO) and the invasive Middle East Asia Minor 1 (MEAM1) species. To assess the resistance level of both of these species to acetamiprid and pymetrozine, whitefly populations were sampled at 15 collection sites located all over the island in agroecosystems and natural areas, and tested using leaf-dip bioassays. We also investigated the potential cost of resistance to acetamiprid by measuring six fitness-related traits for MEAM1 populations that displayed different resistance levels. RESULTS: IO was mainly found in natural areas and was susceptible to both acetamiprid and pymetrozine. MEAM1 populations displayed evidence of high resistance to pymetrozine, whereas resistance to acetamiprid was more variable. No fitness-related costs were associated with this resistance in MEAM1 populations. CONCLUSION: This is the first assessment of the susceptibility to insecticides for B. tabaci IO species. For the time being, no resistance to the tested insecticides has evolved in this species despite (i) its presence in agroecosystems and their surroundings, and (ii) its close proximity to, and possible hybridization with, the MEAM1 species. In contrast, with continuous selection pressure of insecticide treatments and in the absence of fitness cost to resistance, the invasive exotic species MEAM1 will continue to threaten agriculture in La Réunion. © 2019 Society of Chemical Industry.


Assuntos
Hemípteros , Animais , Ásia Oriental , Resistência a Inseticidas , Inseticidas , Reunião
6.
Sci Rep ; 9(1): 14796, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615997

RESUMO

High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the 'invader' hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Resistência à Doença/genética , Hemípteros/genética , Insetos Vetores/genética , Manihot/parasitologia , Doenças das Plantas/estatística & dados numéricos , Distribuição Animal , Animais , Proteção de Cultivos , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Marcadores Genéticos , Variação Genética , Genótipo , Hemípteros/classificação , Hemípteros/patogenicidade , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/classificação , Insetos Vetores/virologia , Masculino , Manihot/genética , Manihot/virologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Dinâmica Populacional , Uganda
7.
PLoS One ; 12(12): e0189234, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281653

RESUMO

With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis helped to better depict the colonization and introduction pattern of honey bee populations in these archipelagos.


Assuntos
Abelhas/genética , Variação Genética , Geografia , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Evolução Molecular , Oceano Índico , Madagáscar , Maurício , Repetições de Microssatélites/genética
8.
PLoS One ; 12(8): e0182749, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813463

RESUMO

After 2007, upsurges of whiteflies on cassava plants and high incidences of cassava diseases were observed in Central African Republic. This recent upsurge in the abundance of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) was directly linked to serious damage to cassava crops resulting from spread of whitefly-borne cassava mosaic geminiviruses (CMGs). There is currently very little information describing whitefly populations on cassava and associated crops in Central African Republic. The current study aimed to address this gap, and to determine whether the increasing damage associated with B. tabaci whiteflies was the consequence of a new invasion, or an upsurge of a local population. The molecular genetic identification and phylogenetic relationships of 898 B. tabaci adult individuals collected from representative locations (54) throughout CAR were determined based on their mitochondrial cytochrome oxidase I sequences (mtCOI). Field and ecological data were also collected from each site, including whitefly abundance, CMD incidence, host plants colonized by B. tabaci and agro-ecological zone. Phylogenetic analysis of the whitefly mtCOI sequences indicated that SSA1 (-SG1, -SG2), SSA3, MED, MEAM1 and Indian Ocean (IO) putative species occur in CAR. One specific haplotype of SSA1-SG1 (SSA1-SG1-P18F5) predominated on most cassava plants and at the majority of sites. This haplotype was identical to the SSA1-SG1 Mukono8-4 (KM377961) haplotype that was recorded from Uganda but that also occurs widely in CMD pandemic-affected areas of East Africa. These results suggest that the SSA1-SG1-P18F5 haplotype occurring in CAR represents a recent invasive population, and that it is the likely cause of the increased spread and severity of CMD in CAR. Furthermore, the high mtDNA sequence diversity observed for SSA1 and its broad presence on all sites and host plants sampled suggest that this genetic group was the dominant resident species even before the arrival of this new invasive haplotype.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética/genética , Hemípteros/classificação , Hemípteros/genética , Manihot/virologia , Animais , Begomovirus/fisiologia , República Centro-Africana , Produtos Agrícolas/virologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Haplótipos , Hemípteros/virologia , Filogenia , Doenças das Plantas/virologia
9.
BMC Genet ; 18(1): 53, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577537

RESUMO

BACKGROUND: The South West Indian Ocean (SWIO) archipelagos and Madagascar constitute a hotspot of biodiversity with a high rate of endemism. In this area, the endemic subspecies A. m. unicolor has been described in Madagascar. It belongs to the African lineage, one of the four described evolutionary lineages in honey bees. Despite a long beekeeping tradition and several recorded European introductions, few studies have been carried out on the diversity and proportion of honey bee subspecies. In order to identify and define which evolutionary lineages and potential sub-lineages are present in the SWIO, the COI-COII intergenic region and the ND2 gene of the mtDNA were sequenced in honey bee colonies from three archipelagos. An extensive sampling (n = 1184 colonies) was done in the Mascarene (La Réunion, Mauritius, Rodrigues), Seychelles (Mahé, Praslin, La Digue) and Comoros (Grande Comore, Mohéli, Anjouan, Mayotte) archipelagos. Islands genetic diversity was compared to newly sampled populations from Madagascar, continental African and European populations. RESULTS: African lineage haplotypes were found in all islands (except for Rodrigues). Madagascar, Comoros and Seychelles had 100% of A lineage, 95.5% in La Réunion and 56.1% in Mauritius. Among all African colonies detected in the SWIO, 98.1% (n = 633) of COI-COII haplotypes described the presence of the subspecies A. M. unicolor. Both genetic markers revealed i) a new private AI mitochondrial group shared by the SWIO archipelagos and Madagascar distant from continental populations; ii) the private African haplotypes for each island suggested diversity radiation in the archipelagos; iii) the detection of the Comoros archipelago as a possible contact area between insular and continental African populations. The exotic European C and M lineages were only detected in the Mascarene archipelago, but striking differences of proportion were observed among islands. Merely 4.6% of European colonies were found in La Réunion whereas Mauritius cumulated 44%. Here, among the 84 observed COI-COII haplotypes, 50 were newly described including 13 which were private to the SWIO archipelagos and Madagascar. Similarly, 24 of the 34 found ND2 haplotypes were novel which included six haplotypes particular to the SWIO populations. CONCLUSION: A new African subgroup was described in the SWIO region with mitochondrial genetic evidence that A. m. unicolor is the indigenous subspecies of the archipelagos surrounding Madagascar.


Assuntos
Abelhas/genética , DNA Mitocondrial , Variação Genética , África , Animais , Abelhas/classificação , Evolução Biológica , Haplótipos , Ilhas do Oceano Índico , Filogenia
10.
Zookeys ; (540): 525-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798276

RESUMO

The fruit fly Ceratitis cosyra is an important agricultural pest negatively affecting the mango crop production throughout Africa and also feeding on a variety of other wild and cultivated hosts. The occurrence of deeply divergent haplotypes, as well as extensive morphological variability, previously suggested possible cryptic speciation within Ceratitis cosyra. Here we provide the first large-scale characterisation of the population structure of Ceratitis cosyra with the main objective of verifying cryptic genetic variation. A total of 348 specimens from 13 populations were genotyped at 16 polymorphic microsatellite loci. Hardy-Weinberg equilibrium (HWE) deviations were observed in 40.4% of locus-population combinations and suggested the occurrence of genetic substructuring within populations. Discriminant Analysis of Principal Components (DAPC) showed genetic divergence between the vast majority of vouchers from Burundi and Tanzania (plus a few outliers from other African countries) and all other specimens sampled. Individual Bayesian assignments confirmed the existence of two main genotypic groups also occurring in sympatry. These data provided further support to the hypothesis that Ceratitis cosyra might include cryptic species. However, additional integrative taxonomy, possibly combining morphological, ecological and physiological approaches, is required to provide the necessary experimental support to this model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...