Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647302

RESUMO

We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bacic, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well.

2.
J Chem Theory Comput ; 19(23): 8767-8781, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032107

RESUMO

Detailed structural, dynamical, and vibrational analyses have been performed for systems composed of linear triatomic molecules solvated by a single rare-gas atom, He, Ne, or Ar. Among the chromophores of these van der Waals (vdW) dimers, there are four neutral molecules (CO2, CS2, N2O, and OCS) and six molecular cations (HHe2+, HNe2+, HAr2+, HHeNe+, HHeAr+, and HNeAr+), both of apolar and polar nature. Following the exploration of bonding preferences, high-level four-dimensional (4D) potential energy surfaces (PESs) have been developed for 24 vdW dimers, keeping the two intramonomer bond lengths fixed. For these 24 complexes, over 1500 bound vibrational states have been obtained via quasi-variational nuclear-motion computations, employing exact kinetic-energy operators together with the accurate 4D PESs and their 2D/3D cuts. The reduced-dimensional (2D to 4D) dimer models have been compared with full-dimensional (6D) ones in the cases of the neutral CO2·Ar and charged HHe2+·He dimers, corroborating the high accuracy of the 2D to 4D vibrational energies. The reduced-dimensional models suggest that (a) while the equilibrium structures are T-shaped and planar, the effective ground-state structures are nonplanar, (b) certain bound states belong to collinear molecular structures, even when they are not minima, (c) the vdW vibrations are heavily mixed and many states have amplitudes corresponding to both the T-shaped and collinear structures, (d) there are a few dimers, for which even some of the vdW fundamentals lie above the first dissociation limit, and (e) the vdW vibrations are almost fully decoupled from the intramonomer bending motion.

3.
J Phys Chem A ; 127(45): 9409-9418, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37930939

RESUMO

Intramolecular vibrational transition wavenumbers and intensities were calculated in the fundamental HOH-bending, fundamental OH-stretching, first OH-stretching-HOH-bending combination, and first OH-stretching overtone (ΔvOH = 2) regions of the water dimer's spectrum. Furthermore, the rotational-vibrational spectrum was calculated in the ΔvOH = 2 region at 10 K, corresponding to the temperature of the existing jet-expansion experiments. The calculated spectrum was obtained by combining results from a full-dimensional (12D) vibrational and a reduced-dimensional vibrational-rotational-tunneling model. The ΔvOH = 2 spectral region is rich in features due to contributions from multiple vibrational-rotational-tunneling sub-bands. Origins of the experimental vibrational bands depend on the assignment of the observed sub-bands. Based on our calculations, we assign the observed sub-bands, and our reassignment leads to new values for the vibrational band origins of the free donor and antisymmetric acceptor OH-stretching first overtones of ∼7227 and ∼7238 cm-1, respectively. The observed bands with origins at 7192.34 and ∼7366 cm-1 are assigned to the symmetric acceptor OH-stretching first overtone and the OH-stretching combination of the donor, respectively.

4.
Angew Chem Int Ed Engl ; 62(41): e202306744, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561837

RESUMO

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex HHe 3 + ${{\rm{HHe}}_3^ + }$ . The equilibrium structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ is planar and T-shaped, one He atom solvating the quasi-linear He-H+ -He core. The dynamical structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent HHe 2 + ${{\rm{HHe}}_2^ + }$ chomophore, but freely orbits the central proton, forming a three-dimensional torus around the HHe 2 + ${{\rm{HHe}}_2^ + }$ chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.

5.
J Chem Theory Comput ; 19(1): 42-50, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534596

RESUMO

Experimental and computational results about the structure, dynamics, and rovibrational spectra of protonated methane have challenged a considerable number of traditional chemical concepts. Hereby theoretical and computational results are provided about the dynamical structure of CH5+. It is shown that the ground vibrational state investigated thus far by computations, forbidden by nuclear-spin statistics, has a structure similar to the first allowed vibrational state and, in fact, the structures of all vibrational states significantly below 200 cm-1 are highly similar. Spatial delocalization of the nuclei, determined by nuclear densities computed from accurate variational vibrational wave functions, turns out to be limited when viewed in the body-fixed frame, confirming that the effective structure of CH5+ is well described as a CH3+ tripod with a H2 unit on top of it. The interesting and unusual qualitative aspects of the sophisticated state-dependent variational results receive full explanation via simple quantum-graph models.

6.
Sci Rep ; 12(1): 8280, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585150

RESUMO

Increasing interest in the fields of high-harmonics generation, laser-induced chemical reactions, and molecular imaging of gaseous targets demands high molecular "alignment" and "orientation" (A&O). In this work, we examine the critical role of different pulse parameters on the field-free A&O dynamics of the CH[Formula: see text]F molecule, and identify experimentally feasible optical and THz range laser parameters that ensure maximal A&O for such molecules. Herein, apart from rotational temperature, we investigate effects of varying pulse parameters such as, pulse duration, intensity, frequency, and carrier envelop phase (CEP). By analyzing the interplay between laser pulse parameters and the resulting rotational population distribution, the origin of specific A&O dynamics was addressed. We could identify two qualitatively different A&O behaviors and revealed their connection with the pulse parameters and the population of excited rotational states. We report here the highest alignment of [Formula: see text] and orientation of [Formula: see text] for CH[Formula: see text]F molecule at 2 K using a single pulse. Our study should be useful to understand different aspects of laser-induced unidirectional rotation in heteronuclear molecules, and in understanding routes to tune/enhance A&O in laboratory conditions for advanced applications.

7.
J Chem Phys ; 156(16): 164304, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490001

RESUMO

A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.

8.
J Comput Chem ; 43(8): 519-538, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35084047

RESUMO

Motivated by recent experiments, the laser-induced alignment-and-orientation (A&O) dynamics of the prolate symmetric top CH3 X (X = F, Cl, Br, I) molecules is investigated, with particular emphasis on the effect of halogen substitution on the rotational constants, dipole moments, and polarizabilities of these species, as these quantities determine the A&O dynamics. Insight into possible control schemes for preferred A&O dynamics of halogenated molecules and best practices for A&O simulations are provided, as well. It is shown that for accurate A&O -dynamics simulations it is necessary to employ large basis sets and high levels of electron correlation when computing the rotational constants, dipole moments, and polarizabilities. The benchmark-quality values of these molecular parameters, corresponding to the equilibrium, as well as the vibrationally averaged structures are obtained with the help of the focal-point analysis (FPA) technique and explicit electronic-structure computations utilizing the gold-standard CCSD(T) approach, basis sets up to quintuple-zeta quality, core-correlation contributions and, in particular, relativistic effects for CH3 Br and CH3 I. It is shown that the different A&O behavior of the CH3 X molecules in the optical regime is mostly caused by the differences in their polarizability anisotropy, in other terms, the size of the halogen atom. In contrast, the A&O dynamics of the CH3 X series induced by an intense few-cycle THz pulse is mostly governed by changes in the rotational constants, due to the similar dipole moments of the CH3 X molecules. The A&O dynamics is most sensitive to the B rotational constant: even the difference between its equilibrium and vibrationally-averaged values results in noticeably different A&O dynamics. The contribution of rotational states having different symmetry, weighted by nuclear-spin statistics, to the A&O dynamics is also studied.

9.
Phys Chem Chem Phys ; 22(27): 15081-15104, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32458891

RESUMO

Resonance states are characterized by an energy that is above the lowest dissociation threshold of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules possess a large number of long- and short-lived resonance (quasibound) states. A considerable number of rotational-vibrational resonance states are accessible not only via quantum-chemical computations but also by spectroscopic and scattering experiments. In a number of chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of rotational-vibrational resonance states is becoming more and more common. There are different first-principles techniques to compute and rationalize rotational-vibrational resonance states: one can perform scattering calculations or one can arrive at rovibrational resonances using variational or variational-like techniques based on methods developed for determining bound eigenstates. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance states, discusses theoretical methods and computational tools allowing their efficient determination, and shows numerical examples from the authors' previous studies on the identification and characterization of rotational-vibrational resonances of polyatomic molecular systems.

10.
Nat Commun ; 11(1): 1708, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249848

RESUMO

Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H216O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H216O energy, now set at 23.794 361 22(25) cm-1, and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry.

11.
J Chem Theory Comput ; 15(7): 4156-4169, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145598

RESUMO

A general and semi-automatic technique, based on the complex absorbing potential (CAP) method, is developed for the variational computation and identification of rotational-vibrational resonance states. This technique is an extension of a method introduced by Tremblay and Carrington ( J. Chem. Phys. 2005, 122, 244107 ), and it employs the damped eigenvectors of a CAP-modified Hamiltonian as a basis to describe resonance wave functions. The low-lying resonances of the weakly bound Ar·NO+ complex are computed with the new and the traditional CAP techniques to test the new algorithm. As an additional, more challenging test case, the bound and resonance rovibrational states of the H2 dimer, the latter with both negative and positive binding energies, are determined, corresponding to different rotational excitations of the H2 monomers. Resonances above the first few dissociation channels of (H2)2 are computed with the new and the traditional CAP methods, revealing some new, assigned resonance quantum states not reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...