Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430521

RESUMO

The invention of chromosome-conformation capture (3C) techniques, in particular the key method Hi-C providing genome-wide information about chromatin contacts, revolutionized the way we study the three-dimensional (3D) organization of the nuclear genome and how it impacts transcription, replication and DNA repair. Since the frequency of chromatin contacts between pairs of genomic segments predictably relates to the distance in the linear genome, the Hi-C information has also proved useful for scaffolding genomic sequences. Here, we review recent enhancements in experimental procedures of Hi-C and its various derivatives such as Micro-C, HiChIP, and Capture Hi-C. We assess advantages and limitations of the techniques, and present examples of their use in recent plant studies. We also report on progress in computational tools used in assembling genome sequences.

2.
Comput Struct Biotechnol J ; 23: 264-277, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38173877

RESUMO

Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.

3.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820736

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Assuntos
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulência/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Methods Mol Biol ; 2672: 465-483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335494

RESUMO

Optical mapping-a technique that visualizes short sequence motives along DNA molecules of hundred kilobases to megabase in size-has found an important place in genome research. It is widely used to facilitate genome sequence assemblies and analyses of genome structural variations. Application of the technique is conditional on availability of highly pure ultra-long high-molecular-weight DNA (uHMW DNA), which is challenging to achieve in plants due to the presence of the cell wall, chloroplasts, and secondary metabolites, just as a high content of polysaccharides and DNA nucleases in some species. These obstacles can be overcome by employment of flow cytometry, enabling a fast and highly efficient purification of cell nuclei or metaphase chromosomes, which are afterward embedded in agarose plugs and used to isolate the uHMW DNA in situ. Here, we provide a detailed protocol for the flow sorting-assisted uHMW DNA preparation that has been successfully used to construct whole-genome as well as chromosomal optical maps for 20 plant species from several plant families.


Assuntos
Cromossomos de Plantas , Plantas , Cromossomos de Plantas/genética , Mapeamento por Restrição , Plantas/genética , Análise de Sequência de DNA/métodos , Genoma de Planta , Citometria de Fluxo/métodos
5.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864547

RESUMO

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Assuntos
Cromátides , Hordeum , Metáfase , Cromátides/química , Cromatina/genética , Cromossomos , Microscopia , Troca de Cromátide Irmã , Cromossomos de Plantas , Hordeum/citologia
6.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
7.
Sci Adv ; 8(27): eabn7258, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857460

RESUMO

In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.

8.
Plant Biotechnol J ; 20(7): 1373-1386, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338551

RESUMO

The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, that is a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them. Here, we analyse sequence gaps in the current reference genome sequence of barley cv. Morex (MorexV3). Optical map and sequence raw data, complemented by ChIP-seq data for centromeric histone variant CENH3, were used to estimate the abundance of centromeric, ribosomal DNA, and subtelomeric repeats in the barley genome. These estimates were compared with copy numbers in the MorexV3 pseudomolecule sequence. We found that almost all centromeric sequences and 45S ribosomal DNA repeat arrays were absent from the MorexV3 pseudomolecules and that the majority of sequence gaps can be attributed to assembly breakdown in long stretches of satellite repeats. However, missing sequences cannot fully account for the difference between assembly size and flow cytometric genome size estimates. We discuss the prospects of gap closure with ultra-long sequence reads.


Assuntos
Hordeum , Cromossomos de Plantas/genética , DNA Ribossômico/genética , Genoma de Planta/genética , Hordeum/genética , Análise de Sequência de DNA , Telômero/genética
9.
Plant Genome ; 15(1): e20191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092350

RESUMO

Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.


Assuntos
Pão , Triticum , DNA Ribossômico/genética , Poliploidia , RNA Ribossômico/genética , Triticum/genética
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088847

RESUMO

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Pólen/genética , Proteínas da Gravidez/genética , Zea mays/genética , Meiose/genética , Mitose/genética
11.
Plant Cell ; 33(6): 1888-1906, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33710295

RESUMO

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Biologia Computacional/métodos , DNA Intergênico , Genoma de Planta , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Sequências Repetidas Terminais
12.
Nat Genet ; 53(4): 564-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737754

RESUMO

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Secale/genética , Triticum/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Cariótipo , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Secale/imunologia , Estresse Fisiológico
13.
Nat Commun ; 12(1): 956, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574268

RESUMO

Plasma membrane-associated and intracellular proteins and protein complexes play a pivotal role in pathogen recognition and disease resistance signaling in plants and animals. The two predominant protein families perceiving plant pathogens are receptor-like kinases and nucleotide binding-leucine-rich repeat receptors (NLR), which often confer race-specific resistance. Leaf rust is one of the most prevalent and most devastating wheat diseases. Here, we clone the race-specific leaf rust resistance gene Lr14a from hexaploid wheat. The cloning of Lr14a is aided by the recently published genome assembly of ArinaLrFor, an Lr14a-containing wheat line. Lr14a encodes a membrane-localized protein containing twelve ankyrin (ANK) repeats and structural similarities to Ca2+-permeable non-selective cation channels. Transcriptome analyses reveal an induction of genes associated with calcium ion binding in the presence of Lr14a. Haplotype analyses indicate that Lr14a-containing chromosome segments were introgressed multiple times into the bread wheat gene pool, but we find no variation in the Lr14a coding sequence itself. Our work demonstrates the involvement of an ANK-transmembrane (TM)-like type of gene family in race-specific disease resistance in wheat. This forms the basis to explore ANK-TM-like genes in disease resistance breeding.


Assuntos
Repetição de Anquirina/genética , Resistência à Doença/genética , Genes de Plantas/genética , Proteínas de Membrana/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Regulação da Expressão Gênica de Plantas , Pool Gênico , Inativação Gênica , Haplótipos , Mutagênese , Melhoramento Vegetal , Proteínas de Plantas/genética , Nicotiana/genética
14.
Biotechnol Adv ; 46: 107659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33259907

RESUMO

The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.


Assuntos
Cromossomos de Plantas , Melhoramento Vegetal , Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica , Plantas/genética
15.
New Phytol ; 229(5): 2812-2826, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33176001

RESUMO

Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética
16.
Comput Struct Biotechnol J ; 18: 1311-1319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612754

RESUMO

Research on the formation of mitotic chromosomes from interphase chromatin domains, ongoing for several decades, made significant progress in recent years. It was stimulated by the development of advanced microscopic techniques and implementation of chromatin conformation capture methods that provide new insights into chromosome ultrastructure. This review aims to summarize and compare several models of chromatin fiber folding to form mitotic chromosomes and discusses them in the light of the novel findings. Functional genomics studies in several organisms confirmed condensins and cohesins as the major players in chromosome condensation. Here we compare available data on the role of these proteins across lower and higher eukaryotes and point to differences indicating evolutionary different pathways to shape mitotic chromosomes. Moreover, we discuss a controversial phenomenon of the mitotic chromosome ultrastructure - chromosome cavities - and using our super-resolution microscopy data, we contribute to its elucidation.

17.
Mol Biol Rep ; 47(3): 1991-2003, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034627

RESUMO

Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of sequence-based markers has opened avenues for comparative analysis, gene transfer and marker assisted selection (MAS) using high throughput cost effective genotyping techniques. Chromosome 2A of wheat is known to harbor several economically important genes. The present study aimed at identification of genic sequences corresponding to full length cDNAs and mining of SSRs and ISBPs from 2A draft sequence assembly of hexaploid wheat cv. Chinese Spring for marker development. In total, 1029 primer pairs including 478 gene derived, 501 SSRs and 50 ISBPs were amplified in diploid A genome species Triticum monococcum and T. boeoticum identifying 221 polymorphic loci. Out of these, 119 markers were mapped onto a pre-existing chromosome 2A genetic map consisting of 42 mapped markers. The enriched genetic map constituted 161 mapped markers with final map length of 549.6 cM. Further, 2A genetic map of T. monococcum was anchored to the physical map of 2A of cv. Chinese Spring which revealed several rearrangements between the two species. The present study generated a highly saturated genetic map of 2A and physical anchoring of genetically mapped markers revealed a complex genetic architecture of chromosome 2A that needs to be investigated further.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Diploide , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA
18.
Plant Biotechnol J ; 18(3): 732-742, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31471988

RESUMO

Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.


Assuntos
Evolução Biológica , Cromossomos de Plantas/genética , Genoma de Planta , Triticum/genética , Aegilops/genética , Hibridização Genômica Comparativa , Locos de Características Quantitativas , Sintenia
19.
Plant Genome ; 12(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290924

RESUMO

Russian wheat aphid (RWA) ( Kurdjumov) is a serious invasive pest of small-grain cereals and many grass species. An efficient strategy to defy aphid attacks is to identify sources of natural resistance and transfer resistance genes into susceptible crop cultivars. Revealing the genes helps understand plant defense mechanisms and engineer plants with durable resistance to the pest. To date, more than 15 RWA resistance genes have been identified in wheat ( L.) but none of them has been cloned. Previously, we genetically mapped the RWA resistance gene into an interval of 0.83 cM on the short arm of chromosome 7D and spanned it with five bacterial artificial chromosome (BAC) clones. Here, we used a targeted strategy combining traditional approaches toward gene cloning (genetic mapping and sequencing of BAC clones) with novel technologies, including optical mapping and long-read nanopore sequencing. The latter, with reads spanning the entire length of a BAC insert, enabled us to assemble the whole region, a task that was not achievable with short reads. Long-read optical mapping validated the DNA sequence in the interval and revealed a difference in the locus organization between resistant and susceptible genotypes. The complete and accurate sequence of the region facilitated the identification of new markers and precise annotation of the interval, revealing six high-confidence genes. Identification of as the most likely candidate opens an avenue for its validation through functional genomics approaches.


Assuntos
Afídeos , Resistência à Doença/genética , Genes de Plantas , Triticum/genética , Animais , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Análise de Sequência de DNA , Triticum/parasitologia
20.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137466

RESUMO

Reference genomes of important cereals, including barley, emmer wheat and bread wheat, were released recently. Their comparison with genome size estimates obtained by flow cytometry indicated that the assemblies represent not more than 88-98% of the complete genome. This work is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make the assemblies more complete. We focused on tandemly organised repetitive sequences, known to be underrepresented in genome assemblies generated from short-read sequence data. Our study found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat reference genome generated from short reads. However, this and another wheat genome assembly employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule context. This suggests that tandem repeats of this size, frequently incorporated in unassigned scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire assembly. We demonstrate how this missing information may be added to the pseudomolecules with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the reference genome of barley.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Hordeum/genética , Sequências de Repetição em Tandem , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...