Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(36): e202400672, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38623589

RESUMO

The solvent-free elimination of sulfinic acid and aromatization of 1,6-trans-substituted bis(arylsulfone) trienes is reported. It is shown that sublimation can be used as a 'green' method to combine the thermal transformation of six trienes and the crystal growth of the resulting 4-(phenylsulfonyl)biphenyls. When the sublimation conditions are carefully controlled, high quality single crystals of the 4-(phenylsulfonyl)biphenyls are obtained. Theoretical modelling of the reaction using the simplified triene Ph-(CH)6-SO2H showed that the cyclization is energetically feasible and that the complete conversion is possible during the timescale of the sublimation. At temperatures slightly higher than the optimum sublimation temperature two of the trienes transformed into 1,4-cyclohexadienes that did not eliminate phenylsulfinic acid. A reaction mechanism involving a 1,3-hydrogen shift induced by free PhS• radicals is proposed for the formation of the 1,4-cyclohexadienes.

2.
J Phys Chem A ; 127(25): 5382-5389, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37319370

RESUMO

A recent suggestion that acetamide, CH3C(O)NH2, could be readily formed on water-ice grains by the acid induced addition of water across the C≡N bond has now been shown to be credible. Computational modeling of the reaction between R-CN (R = H, CH3) and a cluster of 32 molecules of water and one H3O+ proceeds catalytically to form first a hydroxy imine R-C(OH)═NH and second an amide R-C(O)NH2. Quantum mechanical tunneling, computed from small-curvature estimates, plays a key role in the rates of these reactions. This work represents the first reasonable effort to show, in general, how amides can be formed from nitriles and water, which are abundant substrates, reacting on a water-ice cluster containing catalytic amounts of hydrons in the interstellar medium with consequential implications toward the origins of life.

3.
Cryst Growth Des ; 22(5): 3163-3173, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35529062

RESUMO

The identification and study of supramolecular synthons is a fundamental task in the design of pharmaceutical cocrystals. The malaria drug pyrimethamine (pyr) and the antibiotic trimethoprim (tmp) are both 2,4-diaminopyrimidine derivatives, providing the same C-NH2/N=C/C-NH2 and C-NH2/N=C interaction sites. In this article, we analyze and compare the synthons observed in the crystal structures of tmp and pyr cocrystals and molecular salts with sulfamethazine (smz), α-ketoglutaric acid (keto), oxalic acid (ox), sebacic acid (seb), and azeliac acid (az). We show that the same coformer interacts with different binding sites of the 2,4-diaminopyrimidine ring in the respective tmp and pyr cocrystals or binds at the same site but gives H bonding patterns with different graph set notions. Pyr·smz·CH3OH is the first crystal structure in which the interaction of the sulfa drug at the C-NH2/N=C/C-NH2 site with three parallel NH2···N, N···NHsulfonamide, and NH2···O=S H bonds is observed. The main synthon in (tmp+)(keto-).0.5H2O and (tmp+)2(ox2-)·2CH3OH is the motif of fused R 2 1(6) and R 1 2(5) rings instead of the R 2 2(8) motif typically observed in tmp+ and pyr+ carboxylates. Tmp/az is a rare example of cocrystal-salt polymorphism where the two solid-state forms have the same composition, stoichiometry, and main synthon. Theoretical calculations were performed to understand the order of stability, which is tmp·az cocrystal > (tmp+)(az-) salt. Finally, two three-component tmp/sulfa drug/carboxylate cocrystals with a unique ternary synthon are described.

4.
J Phys Chem A ; 126(6): 924-939, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35113546

RESUMO

This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. Only two of the isomers have been detected in emissions from the interstellar medium (ISM); possible further candidates are identified, and the likelihood of their being detectable is considered. In general, hardly any of these compounds have been discussed in the existing chemical literature, so this work represents an important contribution extending the canon of chemical bonding which can contribute to machine learning, providing a more exacting test of AI applications. The presence in the ISM of acetamide, CH3C(O)NH2, is the subject of current debate with no clear and obvious paths to its formation; it is shown that a 1,3-[H]-transfer from (E,Z)-ethanimidic acid, CH3C(OH)═NH, is feasible in spite of an energy barrier of 130 kJ mol-1. It is speculated that imidic acid can itself be formed from abundant precursors, H2O and CH3C≡N, in an acid-induced, water addition, autocatalytic reaction on water-ice grains. H3CC≡N→H3O+H3CC≡NH+ + H2O→H2OH3CC(O+H2)═NH→H2OH3CC(OH)═NH + H3O.


Assuntos
Acetamidas , Água , Isomerismo , Água/química
5.
Phys Chem Chem Phys ; 20(16): 10732-10740, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29349452

RESUMO

The kinetics of many reactions are critically dependent upon the barrier heights for which accurate determination can be difficult. From the perspective of attaining such quantities using computational quantum chemistry, it is important to appropriately validate routine and efficient methodologies such as density functional theory (DFT) procedures. In the present study, we embark on the journey of establishing diverse databases using a consistent high-level quantum chemistry procedure, against which new and existing methodologies can be assessed. Thus, we have used the composite protocol W3X-L to provide more than 100 refined reference values for existing databases [e.g., Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656] and additionally establish benchmark data that are of interest to atmospheric and combustion chemists. While our endeavor has just begun, assessment of various DFT methods with our existing results lends support to the use of MN15 as an adequate method for general kinetics applications. We also recommend the use of less-costly W2X and WG composite protocols for obtaining adequately accurate reference thermochemical values for larger molecular systems.

6.
J Phys Chem A ; 121(9): 1890-1899, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28195726

RESUMO

Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.

7.
J Phys Chem A ; 120(36): 7037-44, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558073

RESUMO

Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. Calculated thermodynamic and kinetic data are presented for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. These radicals can be formed via H atom abstraction reactions by H and Ö atoms and È®H, HÈ®2, and CH3 radicals, the rate constants of which have been calculated. Abstraction from the ß-hydrogen atom is the dominant process when È®H is involved, but the reverse holds true for HÈ®2 radicals. The subsequent ß-scission of the radicals formed is also determined, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.

8.
J Phys Chem A ; 120(36): 7192-7, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27547977

RESUMO

To simulate emissions of nitrogen-containing compounds in practical combustion environments, it is necessary to have accurate values for their thermochemical parameters, as well as accurate kinetic values to describe the rates of their formation and decomposition. Significant disparity is observed in the literature for the former, and we therefore present herein high-accuracy ab initio gas-phase thermochemistry for 60 nitrogenous compounds, many of which are important in the formation and consumption chemistry of NOx species. Several quantum-chemical composite methods (CBS-APNO, G3, and G4) were utilized to derive enthalpies of formation via the atomization method. Entropies and heat capacities were calculated from traditional statistical thermodynamics, with oscillators treated as anharmonic based on ro-vibrational property analyses carried out at the B3LYP/cc-pVTZ level of theory. The use of quantum chemical methods, along with the treatments of anharmonicities and hindered rotors, ensures accurate enthalpy of formation, entropy, and heat capacity values across the temperature range 298.15-3000 K. The implications of these results for atmospheric and combustion modeling are discussed.


Assuntos
Poluentes Ambientais/química , Modelos Químicos , Compostos de Nitrogênio/química , Entropia , Teoria Quântica , Termodinâmica
9.
J Phys Chem A ; 119(42): 10511-26, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26421747

RESUMO

Accurate thermochemical data for compounds containing C/H/N/O are required to underpin kinetics simulation and modeling of the reactions of these species in different environments. There is a dearth of experimental data so computational quantum chemistry has stepped in to fill this breach and to verify whether particular experiments are in need of revision. A number of composite model chemistries (CBS-QB3, CBS-APNO, G3, and G4) are used to compute theoretical atomization energies and hence enthalpies of formation at 0 and 298.15 K, and these are benchmarked against the best available compendium of values, the Active Thermochemical Tables or ATcT. In general the agreement is very good for some 28 species with the only discrepancy being for hydrazine. It is shown that, although individually the methods do not perform that well, collectively the mean unsigned error is <1.7 kJ mol(-1); hence, this approach provides a useful tool to screen published values and validate new experimental results. Using multiple model chemistries does have some drawbacks but can produce good results even for challenging molecules like HOON and CN2O2. The results for these smaller validated molecules are then used as anchors for determining the formation enthalpies of larger species such as methylated hydrazines and diazenes, five- and six-membered heterocyclics via carefully chosen isodesmic working reactions with the aim of resolving some discrepancies in the literature and establishing a properly validated database. This expanded database could be useful in testing the performance of computationally less-demanding density function methods with newer functionals that have the capacity to treat much larger systems than those tested here.

10.
J Phys Chem A ; 119(39): 9962-77, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26351733

RESUMO

Substituted furans, including furanic ethers, derived from nonedible biomass have been proposed as second-generation biofuels. In order to use these molecules as fuels, it is important to understand how they break apart thermally. In this work, a series of experiments were conducted to study the unimolecular and low-pressure bimolecular decomposition mechanisms of the smallest furanic ether, 2-methoxyfuran. Electronic structure (CBS-QB3) calculations indicate this substituted furan has an unusually weak O-CH3 bond, approximately 190 kJ mol(-1) (45 kcal mol(-1)); thus, the primary decomposition pathway is through bond scission resulting in CH3 and 2-furanyloxy (O-C4H3O) radicals. Final products from the ring opening of the furanyloxy radical include 2 CO, HC≡CH, and H. The decomposition of methoxyfuran is studied over a range of concentrations (0.0025-0.1%) in helium or argon in a heated silicon carbide (SiC) microtubular flow reactor (0.66-1 mm i.d., 2.5-3.5 cm long) with reactor wall temperatures from 300 to 1300 K. Inlet pressures to the reactor are 150-1500 Torr, and the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. Products formed at early pyrolysis times (100 µs) are detected by 118.2 nm (10.487 eV) photoionization mass spectrometry (PIMS), tunable synchrotron VUV PIMS, and matrix infrared absorption spectroscopy. Secondary products resulting from H or CH3 addition to the parent and reaction with 2-furanyloxy were also observed and include CH2═CH-CHO, CH3-CH═CH-CHO, CH3-CO-CH═CH2, and furanones; under the conditions in the reactor, we estimate these reactions contribute to at most 1-3% of total methoxyfuran decomposition. This work also includes observation and characterization of an allylic lactone radical, 2-furanyloxy (O-C4H3O), with the assignment of several intense vibrational bands in an Ar matrix, an estimate of the ionization threshold, and photoionization efficiency. A pressure-dependent kinetic mechanism is also developed to model the decomposition behavior of methoxyfuran and provide pathways for the minor bimolecular reaction channels that are observed experimentally.


Assuntos
Biocombustíveis , Furanos/química , Temperatura Alta , Éteres , Espectrometria de Massas , Modelos Teóricos , Estrutura Molecular , Teoria Quântica , Espectrofotometria Infravermelho
11.
J Phys Chem A ; 119(33): 8922-33, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26171842

RESUMO

The 298.15 K formation enthalpies of 38 radicals with molecular formula CxHyOz have been computed via the atomization procedure using the five title methods. The computed formation enthalpies are then benchmarked against the values recommended in the Active Thermochemical Tables (ATcT). The accuracy of the methods have been interpreted in terms of descriptive statistics, including the mean-signed error, mean-unsigned error, maximum average deviation, 2σ uncertainties, and 2×root-mean-square-deviations (2RMSD). The results highlight the following rank order of accuracy for the methods studied G4 > G3 > W1BD > CBS-APNO > CBS-QB3. The findings of this work are also considered in light of a recent companion study, which took an identical approach to quantifying the accuracies of these methods for 48 closed-shell singlet CxHyOz compounds. A similar order of accuracies and precisions were observed therein: G3 > G4 > W1BD > CBS-APNO > CBS-QB3. Both studies highlight systematic biases/deviations from the ATcT for the methods investigated, which are discussed in some detail, with methods having clear tendencies to over- or underpredict the recommended formation enthalpies for radical and/or closed-shell CxHyOz compounds. We show that one can improve the accuracy of their computation, and simultaneously reduce the uncertainty, by taking unweighted average formation enthalpies from various combinations of methods used. The reader should note that the statistical analyses preceding these conclusions also highlight that these error cancellation effects are unique for closed-shell and radical species. By extension, these error-cancellation effects can be expected to be different for various homologous series and chemical functionalities and their closed- and open-shell subgroups. Hence, further benchmarking studies are advised for other homologous series, such that the scientists and engineers (e.g., combustion/atmospheric/astrochemical) who frequently use these methods can assign reasonable uncertainties to their computations, while simultaneously optimizing their computational costs. For CxHyOz compounds, a combination of the CBS-APNO/G3/G4 methods is shown to be quite powerful when the atomization method is employed and is capable of reproducing the ATcT to within "near-chemical-accuracy", with 2RMSD (≈95% confidence interval) values of 0.0 ± 4.34 kJ mol(-1) computed for CxHyOz radicals, 0.0 ± 4.22 kJ mol(-1) for closed-shell CxHyOz compounds, with a total uncertainty of 0.0 ± 4.27 kJ mol(-1) subsequently computed considering all 85 CxHyOz compounds. Given the performance of these methods for determination of formation enthalpies when the atomization procedure is employed, we expect isodesmic reactions involving these methods to be capable of achieving chemical accuracy, as illustrated for the case of the tert-butyl radical. We also highlight that there is still disagreement between experiment and theory for this radical, despite its significance in gas-phase chemistry. Kineticists, thermodynamicists, and chemical kinetic modellers alike are warned that the popular CBS-QB3 method is found to have particularly poor performance, with a computed 2RMSD of 0.0 ± 12.51 kJ mol(-1), indicating that one should not apply this method in isolation for formation enthalpy determination unless other error-cancellation strategies are employed.

12.
J Phys Chem A ; 119(26): 6919-27, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26053126

RESUMO

The thermal decomposition reactions of 2(3H) and 2(5H) furanones and their methyl derivatives are explored. Theoretical calculations of the barriers, reaction enthalpies, and the properties of these and intermediate species are reported using the composite model chemistry CBS-QB3 and also the functional M06-2X allied to the 6-311++G(d,p) basis set. Thus, the bond dissociation enthalpies, ionization energies, and unimolecular chemical kinetic rate constants in the high-pressure limit were computed. We show that flow reactor experiments that intimated that heating the 2(3H) furanone converts it to the isomeric 2(5H) furanone occurs via a 1 → 2 H-transfer reaction to an open ring ketenoic aldehyde. The latter can then ring close to the other isomeric structure. The final products acrolein and carbon monoxide are only formed from 2(3H), and acrolein will further decompose to ethylene and CO. Comparable channels explain the interconversion of 5-methyl-2(3H) furanone to its 2(5H) isomer and to the formation of methyl vinyl ketone and CO. The influence of the methyl group at other positions on the ring is hardly of significance except in the case of 5-methyl-2(5H) furanone where a hydrogen atom transfer from the methyl group leads to the formation of a doubly unsaturated carboxylic compound, 2,4-pentadienoic acid. Studies of the UV photolysis of the parent compounds in both low-temperature inert argon matrices and in solution are broadly in accord with the thermal findings insofar as product formation is concerned and with our theoretical calculations. The dominant features of the early decomposition chemistry of these compounds are simple hydrogen transfer and simultaneous ring opening reactions, which do however result in some quite unusual species.

13.
J Phys Chem A ; 119(28): 7235-46, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25580800

RESUMO

The theoretical atomization energies of some 45 CxHyOz molecules present in the Active Thermochemical Tables compilation and of particular interest to the combustion chemistry community have been computed using five composite model chemistries as titled. The species contain between 1-8 "heavy" atoms, and a few are conformationally diverse with up to nine conformers. The enthalpies of formation at 0 and 298.15 K are then derived via the atomization method and compared against the recommended values. In general, there is very good agreement between our averaged computed values and those in the ATcT; those for 1,3-cyclopentadiene exceptionally differ considerably, and we show from isodesmic reactions that the true value for 1,3-cyclopentadiene is closer to 134 kJ mol(-1) than the reported 101 kJ mol(-1). If one is restricted to using a single method, statistical measures indicate that the best methods are in the rank order G3 ≈ G4 > W1BD > CBS-APNO > CBS-QB3. The CBS-x methods do on average predict ΔfH(⊖)(298.15 K) within ≈5 kJ mol(-1) but are prone to occasional lapses. There are statistical advantages to be gained from using a number of methods in tandem, and all possible combinations have been tested. We find that the average formation enthalpy coming from using CBS-APNO/G4, CBS-APNO/G3, and G3/G4 show lower mean signed and mean unsigned errors, and lower standard and root-mean-squared deviations, than any of these methods in isolation. Combining these methods also leads to the added benefit of providing an uncertainty rooted in the chemical species under investigation. In general, CBS-APNO and W1BD tend to underestimate the formation enthalpies of target species, whereas CBS-QB3, G3, and G4 have a tendency to overestimate the same. Thus, combining CBS-APNO with a G3/G4 combination leads to an improvement in all statistical measures of accuracy and precision, predicting the ATcT values to within 0.14 ± 4.21 kJ mol(-1), thus rivalling "chemical accuracy" (±4.184 kJ mol(-1)) without the excessive cost associated with higher-level methods such as W1BD.

14.
J Phys Chem A ; 118(40): 9364-79, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25180943

RESUMO

Standard enthalpies of formation (ΔH°f 298) of methyl, ethyl, primary and secondary propyl, and n-butyl radicals are evaluated and used in work reactions to determine internal consistency. They are then used to calculate the enthalpy of formation for the tert-butyl radical. Other thermochemical properties including standard entropies (S°(T)), heat capacities (Cp(T)), and carbon-hydrogen bond dissociation energies (C-H BDEs) are reported for n-pentane, n-heptane, 2-methylhexane, 2,3-dimethylpentane, and several branched higher carbon number alkanes and their radicals. ΔH°f 298 and C-H BDEs are calculated using isodesmic work reactions at the B3LYP (6-31G(d,p) and 6-311G(2d,2p) basis sets), CBS-QB3, CBS-APNO, and G3MP2B3 levels of theory. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level for contributions to entropy and heat capacities. Enthalpy calculations for these hydrocarbon radical species are shown to have consistency with the CBS-QB3 and CBS-APNO methods using all work reactions. Our recommended ideal gas phase ΔH°f 298 values are from the average of all CBS-QB3, CBS-APNO, and for G3MP2B3, only where the reference and target radical are identical types, and are compared with literature values. Calculated values show agreement between the composite calculation methods and the different work reactions. Secondary and tertiary C-H bonds in the more highly branched alkanes are shown to have bond energies that are several kcal mol(-1) lower than the BDEs in corresponding smaller molecules often used as reference species. Entropies and heat capacities are calculated and compared to literature values (when available) when all internal rotors are considered.

15.
J Phys Chem A ; 118(27): 5013-9, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24945977

RESUMO

The total rates of reaction between four cyclic esters (ß-butyro-, γ-butyro-, γ-valero- and δ-valero-lactones) and the OH radical have been measured relative to the rate of reaction of a reference compound, ethene, at room temperatures. The measurements show that the rates increase with increasing ring size. Theoretical calculations on the four lactones with the inclusion of a fifth, α-methyl-γ-butyrolactone, are broadly in agreement with this picture but provide a more insightful view of the sites at which hydrogen atom abstraction occurs in each molecule.

16.
J Phys Chem A ; 118(23): 4172-83, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24828300

RESUMO

The enthalpies of formation, bond dissociation energies, ionization potentials, and kinetics of reaction with hydrogen atoms and methyl radicals have been systematically calculated for angelica lactone and a number of related furanones. The objective was to provide comprehensive thermodynamic and kinetic data of compounds that are projected to play a role as intermediates in the production of platform chemicals and biofuels.


Assuntos
Furanos/química , Lactonas/química , Metano/análogos & derivados , Biocombustíveis , Biomassa , Cinética , Metano/química , Termodinâmica
17.
Phys Chem Chem Phys ; 16(11): 5349-67, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24496403

RESUMO

Due to the rapidly growing interest in the use of biomass derived furanic compounds as potential platform chemicals and fossil fuel replacements, there is a simultaneous need to understand the pyrolysis and combustion properties of such molecules. To this end, the potential energy surfaces for the pyrolysis relevant reactions of the biofuel candidate 2-methylfuran have been characterized using quantum chemical methods (CBS-QB3, CBS-APNO and G3). Canonical transition state theory is employed to determine the high-pressure limiting kinetics, k(T), of elementary reactions. Rice-Ramsperger-Kassel-Marcus theory with an energy grained master equation is used to compute pressure-dependent rate constants, k(T,p), and product branching fractions for the multiple-well, multiple-channel reaction pathways which typify the pyrolysis reactions of the title species. The unimolecular decomposition of 2-methylfuran is shown to proceed via hydrogen atom transfer reactions through singlet carbene intermediates which readily undergo ring opening to form collisionally stabilised acyclic C5H6O isomers before further decomposition to C1-C4 species. Rate constants for abstraction by the hydrogen atom and methyl radical are reported, with abstraction from the alkyl side chain calculated to dominate. The fate of the primary abstraction product, 2-furanylmethyl radical, is shown to be thermal decomposition to the n-butadienyl radical and carbon monoxide through a series of ring opening and hydrogen atom transfer reactions. The dominant bimolecular products of hydrogen atom addition reactions are found to be furan and methyl radical, 1-butene-1-yl radical and carbon monoxide and vinyl ketene and methyl radical. A kinetic mechanism is assembled with computer simulations in good agreement with shock tube speciation profiles taken from the literature. The kinetic mechanism developed herein can be used in future chemical kinetic modelling studies on the pyrolysis and oxidation of 2-methylfuran, or the larger molecular structures for which it is a known pyrolysis/combustion intermediate (e.g. cellulose, coals, 2,5-dimethylfuran).

18.
Combust Flame ; 160(11)2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24273333

RESUMO

The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6-1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820-1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work.

19.
Proc Combust Inst ; 34(1): 225-232, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23814505

RESUMO

An experimental ignition delay time study for the promising biofuel 2-methyl furan (2MF) was performed at equivalence ratios of 0.5, 1.0 and 2.0 for mixtures of 1% fuel in argon in the temperature range 1200-1800 K at atmospheric pressure. Laminar burning velocities were determined using the heat-flux method for mixtures of 2MF in air at equivalence ratios of 0.55-1.65, initial temperatures of 298-398 K and atmospheric pressure. A detailed chemical kinetic mechanism consisting of 2059 reactions and 391 species has been constructed to describe the oxidation of 2MF and is used to simulate experiment. Accurate reproduction of the experimental data has been obtained over all conditions with the developed mechanism. Rate of production and sensitivity analyses have been carried out to identify important consumption pathways of the fuel and key kinetic parameters under these conditions. The reactions of hydrogen atom with the fuel are highlighted as important under all experimental conditions studied, with abstraction by the hydrogen atom promoting reactivity and hydrogen atom addition to the furan ring inhibiting reactivity. This work, to the authors knowledge, is the first to combine theoretical and experimental work to describe the oxidation of any of the alkylated furans. The mechanism developed herein to describe 2MF combustion should also function as a sub-mechanism to describe the oxidation of 2,5-dimethyl furan whilst also providing key insights into the oxidation of this similar biofuel candidate.

20.
ChemSusChem ; 6(1): 36-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23255461

RESUMO

The rapid development in methods for transforming non-edible biomass into platform chemicals and fuels has accelerated over recent years. However, the determination of whether these 'next-generation' biofuels perform in a satisfactory manner in engines, turbines and burners has lagged behind. The evaluation of the ecological and toxicological aspects has also been unable to keep up. We show, by using 2,5-dimethylfuran (DMF) as a concrete example, how a range of studies is needed to establish the benefits and risks of using a particular biofuel. In this regard, the variable with the largest impact about which little is known is probably the behaviour of DMF when it is accidentally introduced into groundwater. A primary consideration is to avoid a repetition of the methyl tert-butyl ether (MTBE) fiasco.


Assuntos
Biocombustíveis , Furanos , Animais , Biomassa , Furanos/química , Furanos/toxicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...