Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 182(4): 995-1005, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27651228

RESUMO

Intraspecific variability is increasingly recognized as an important component of foraging behavior that can have implications for both population and community dynamics. We used an individual-level approach to describe the foraging behavior of an abundant, generalist predator that inhabits a dynamic marine ecosystem, focusing specifically on the different foraging strategies used by individuals in the same demographic group. We collected data on movements and diving behavior of adult female California sea lions (Zalophus californianus) across multiple foraging trips to sea. Sea lions (n = 35) used one of three foraging strategies that primarily differed in their oceanic zone and dive depth: a shallow, epipelagic strategy, a mixed epipelagic/benthic strategy, and a deep-diving strategy. Individuals varied in their degree of fidelity to a given strategy, with 66 % of sea lions using only one strategy on all or most of their foraging trips across the two-month tracking period. All foraging strategies were present in each of the sampling years, but there were inter-annual differences in the population-level importance of each strategy that may reflect changes in prey availability. Deep-diving sea lions traveled shorter distances and spent a greater proportion of time at the rookery than sea lions using the other two strategies, which may have energetic and reproductive implications. These results highlight the importance of an individual-based approach in describing the foraging behavior of female California sea lions and understanding how they respond to the seasonal and annual changes in prey availability that characterize the California Current System.


Assuntos
Comportamento Alimentar , Leões-Marinhos , Animais , Mergulho , Ecossistema , Meio Ambiente
2.
Proc Biol Sci ; 279(1731): 1041-50, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22189402

RESUMO

Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.


Assuntos
Comportamento Animal , Mergulho/fisiologia , Pressão Hidrostática , Mamíferos/fisiologia , Estresse Fisiológico , Animais , Descompressão , Doença da Descompressão/fisiopatologia , Humanos , Cinética , Nitrogênio/metabolismo
3.
J Anim Ecol ; 79(6): 1146-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20673236

RESUMO

1. Identification of foraging behaviour and the ability to assess foraging success is critical to understanding individual and between-species variation in habitat use and foraging ecology. For pelagic predators, behaviour-dependent foraging metrics are commonly used to identify important foraging areas, yet few of these metrics have been validated. 2. Using the northern elephant seal as a model species, we validated the use of a behaviour-independent measure of foraging success (changes in drift rate) at the scale of the entire foraging migration, and then used this to assess a variety of common foraging metrics that are based on movement patterns and dive behaviour. Transit rate consistently provided the best estimate of daily foraging success, although the addition of other metrics provides insight into different foraging behaviours or strategies. 3. While positive changes in buoyancy occurred throughout most of the migrations, implying successful feeding across much of the north Pacific, the areas of most rapid changes in buoyancy occurred along a latitudinal band (40-50° N) corresponding to a dynamic hydrographic region including Subarctic Gyre and Transition Zone waters. 4. These results support the use of transit rate as an index of foraging success: a metric that is easily derived from tracking measurements on a wide range of marine species.


Assuntos
Migração Animal , Comportamento Predatório/fisiologia , Focas Verdadeiras/fisiologia , Animais , Composição Corporal , Mergulho , Ecossistema , Feminino , Atividade Motora , Oceanos e Mares , Fatores de Tempo
4.
J Exp Biol ; 213(4): 585-92, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20118309

RESUMO

The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4+/-17.0 liters in female elephant seals or 20.2+/-2.0% of body mass. Plasma volume averaged 32.2+/-7.8 liters or 8.7+/-0.7% of body mass. Absolute plasma volume and blood volume increased independently with mass and age. Hematocrit decreased weakly with mass but did not vary with age. Muscle myoglobin concentration, while higher than previously reported (7.4+/-0.7 g%), did not vary with mass or age. Pregnancy status did not influence blood volume. Mean dive duration, a proxy for physiological demand, increased as a function of how long seals had been at sea, followed by mass and hematocrit. Strong effects of female body mass (range, 218-600 kg) on dive duration, which were independent of oxygen stores, suggest that larger females had lower diving metabolic rates. A tendency for dives to exceed calculated aerobic limits occurred more frequently later in the at-sea migration. Our data suggest that individual physiological state variables and condition interact to determine breath-hold ability and that both should be considered in life-history studies of foraging behavior.


Assuntos
Mergulho/fisiologia , Focas Verdadeiras/fisiologia , Fatores Etários , Animais , Volume Sanguíneo , Peso Corporal , Feminino , Mioglobina/metabolismo , Oxigênio/sangue , Oxigênio/metabolismo , Gravidez , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...