Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(6): e0050023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272792

RESUMO

Microbial assembly and metabolic potential in the subsurface critical zone (SCZ) are substantially impacted by subsurface geochemistry and hydrogeology, selecting for microbes distinct from those in surficial soils. In this study, we integrated metagenomics and geochemistry to elucidate how microbial composition and metabolic potential are shaped and impacted by vertical variations in geochemistry and hydrogeology in terrestrial subsurface sediment. A sediment core from an uncontaminated, pristine well at Oak Ridge Field Research Center in Oak Ridge, Tennessee, including the shallow subsurface, vadose zone, capillary fringe, and saturated zone, was used in this study. Our results showed that subsurface microbes were highly localized and that communities were rarely interconnected. Microbial community composition as well as metabolic potential in carbon and nitrogen cycling varied even over short vertical distances. Further analyses indicated a strong depth-related covariation of community composition with a subset of 12 environmental variables. An analysis of dissolved organic carbon (DOC) quality via ultrahigh resolution mass spectrometry suggested that the SCZ was generally a low-carbon environment, with the relative portion of labile DOC decreasing and that of recalcitrant DOC increasing along the depth, selecting microbes from copiotrophs to oligotrophs and also impacting the microbial metabolic potential in the carbon cycle. Our study demonstrates that sediment geochemistry and hydrogeology are vital in the selection of distinct microbial populations and metabolism in the SCZ. IMPORTANCE In this study, we explored the links between geochemical parameters, microbial community structure and metabolic potential across the depth of sediment, including the shallow subsurface, vadose zone, capillary fringe, and saturated zone. Our results revealed that microbes in the terrestrial subsurface can be highly localized, with communities rarely being interconnected along the depth. Overall, our research demonstrates that sediment geochemistry and hydrogeology are vital in the selection of distinct microbial populations and metabolic potential in different depths of subsurface terrestrial sediment. Such studies correlating microbial community analyses and geochemistry analyses, including high resolution mass spectrometry analyses of natural organic carbon, will further the fundamental understanding of microbial ecology and biogeochemistry in subsurface terrestrial ecosystems and will benefit the future development of predictive models on nutrient turnover in these environments.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Carbono/metabolismo , Tennessee
2.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897939

RESUMO

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética , Edição de Genes , Bactérias/genética , DNA
3.
Nat Commun ; 12(1): 3209, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050180

RESUMO

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.


Assuntos
Actinobacteria/metabolismo , Secas , Ferro/metabolismo , Microbiota/fisiologia , Sorghum/fisiologia , Aclimatação , Actinobacteria/genética , Produção Agrícola , Segurança Alimentar , Metagenômica/métodos , Raízes de Plantas/microbiologia , RNA-Seq , Rizosfera , Microbiologia do Solo , Sorghum/microbiologia , Estresse Fisiológico
4.
Front Plant Sci ; 11: 599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547572

RESUMO

Efforts to boost crop yield and meet global food demands while striving to reach sustainability goals are hindered by the increasingly severe impacts of abiotic stress, such as drought. One strategy for alleviating drought stress in crops is to utilize root-associated bacteria, yet knowledge concerning the relationship between plant hosts and their microbiomes during drought remain under-studied. One broad pattern that has recently been reported in a variety of monocot and dicot species from both native and agricultural environments, is the enrichment of Actinobacteria within the drought-stressed root microbiome. In order to better understand the causes of this phenomenon, we performed a series of experiments in millet plants to explore the roles of drought severity, drought localization, and root development in provoking Actinobacteria enrichment within the root endosphere. Through 16S rRNA amplicon-based sequencing, we demonstrate that the degree of drought is correlated with levels of Actinobacterial enrichment in four species of millet. Additionally, we demonstrate that the observed drought-induced enrichment of Actinobacteria occurs along the length of the root, but the response is localized to portions of the root experiencing drought. Finally, we demonstrate that Actinobacteria are depleted in the dead root tissue of Japanese millet, suggesting saprophytic activity is not the main cause of observed shifts in drought-treated root microbiome structure. Collectively, these results help narrow the list of potential causes of drought-induced Actinobacterial enrichment in plant roots by showing that enrichment is dependent upon localized drought responses but not root developmental stage or root death.

5.
J Vis Exp ; (135)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782021

RESUMO

The intimate interaction between plant host and associated microorganisms is crucial in determining plant fitness, and can foster improved tolerance to abiotic stresses and diseases. As the plant microbiome can be highly complex, low-cost, high-throughput methods such as amplicon-based sequencing of the 16S rRNA gene are often preferred for characterizing its microbial composition and diversity. However, the selection of appropriate methodology when conducting such experiments is critical for reducing biases that can make analysis and comparisons between samples and studies difficult. This protocol describes in detail a standardized methodology for the collection and extraction of DNA from soil, rhizosphere, and root samples. Additionally, we highlight a well-established 16S rRNA amplicon sequencing pipeline that allows for the exploration of the composition of bacterial communities in these samples, and can easily be adapted for other marker genes. This pipeline has been validated for a variety of plant species, including sorghum, maize, wheat, strawberry, and agave, and can help overcome issues associated with the contamination from plant organelles.


Assuntos
Microbiota/genética , Raízes de Plantas/química , Rizosfera , Microbiologia do Solo , Bactérias/genética , Filogenia
6.
Proc Natl Acad Sci U S A ; 115(18): E4284-E4293, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666229

RESUMO

Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.


Assuntos
Bactérias , Microbiota , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Desidratação/metabolismo , Desidratação/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sorghum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...