Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Scholarsh Teach Learn ; 21(1): 241-286, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35992735

RESUMO

Research experience provides critical training for new biomedical research scientists. Students from underrepresented populations studying science, technology, engineering, and mathematics (STEM) are increasingly recruited into research pathways to diversify STEM fields. However, support structures outside of research settings designed to help these students navigate biomedical research pathways are not always available; nor are program support components outside the context of laboratory technical skills training and formal mentorship well understood. This study leveraged a multi-institutional research training program, Enhancing Cross-Disciplinary Infrastructure and Training at Oregon (EXITO), to explore how nine institutions designed a new curricular structure (Enrichment) to meet a common goal of enhancing undergraduate research training and student success. EXITO undergraduates participated in a comprehensive, 3-year research training program with the Enrichment component offered across nine sites: three universities and six community colleges, highly diverse in size, demographics, and location. Sites' approaches to supporting students in the training program were studied over a 30-month period. All sites independently created their own nonformal curricular structures, implemented interprofessionally via facilitated peer groups. Site data describing design and implementation were thematically coded to identify essential programmatic components across sites, with student feedback used to triangulate findings. Enrichment offered students time to critically reflect on their interests, experiences, and identities in research; network with peers and professionals; and support negotiation of hidden and implicit curricula. Students reported the low-pressure setting and student-centered curriculum balanced the high demands associated with academics and research. Core curricular themes described Enrichment as fostering a sense of community among students, exposing students to career paths and skills, and supporting development of students' professional identities. The non-formal, interprofessional curricula enabled students to model diverse biomedical identities and pathways for each other while informing institutional structures to improve diverse undergraduate students' success in academia and research.

2.
Biotechnol Prog ; 22(5): 1394-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17022679

RESUMO

Optimal DNA vaccine efficacy requires circumventing several obstacles, including low immunogenicity, a need for adjuvant, and the costs of purifying injection grade plasmid DNA. Bacterial delivery of plasmid DNA may provide an efficient and low-cost alternative to plasmid purification and injection. Also, the bacterial vector may exhibit potential as an immune adjuvant in vivo. Thus, we elected to examine the use of cell-wall-deficient Listeria monocytogenes as a DNA delivery vehicle in vitro. First, the D-alanine-deficient (Deltadal-dat) L. monocytogenes strain DP-L3506, which undergoes autolysis inside eukaryotic host cells in the absence of D-alanine, was transformed with a plasmid encoding green fluorescent protein (GFP) under control of the CMV promoter (pAM-EGFP). Then COS-7 and MC57G cell lines were infected with the transformed DP-L3506 at various multiplicities of infection (MOI) in the presence or absence of D-alanine. Subsequent GFP expression was observed in both cell lines by 24 h post-infection with DP-L3506(pAM-EGFP). Notably, no GFP positive cells were observed when D-alanine was omitted. Although transfection efficiency initially increased as a result of D-alanine supplementation, high concentration or long-term supplementation led to sustained bacterial growth that killed the infected host cells, resulting in fewer GFP-expressing cells. Thus, efficient DNA delivery by transformed bacteria must balance bacterial invasion and survival with target cell health and survival.


Assuntos
Alanina/química , DNA/química , Técnicas de Transferência de Genes , Listeria monocytogenes/metabolismo , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Biotecnologia/métodos , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos
3.
Infect Immun ; 71(11): 6372-80, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573658

RESUMO

The goal of this study was to develop a new surrogate challenge model for use in evaluating protective cell-mediated immune responses against hepatitis C virus (HCV) antigens. The use of recombinant Listeria monocytogenes organisms which express HCV antigens provides novel tools with which to assay such in vivo protection, as expression of immunity against this hepatotropic bacterial pathogen is dependent on antigen-specific CD8(+) T lymphocytes. A plasmid DNA vaccine encoding a ubiquitin-NS3 fusion protein was generated, and its efficacy was confirmed by in vivo induction of NS3-specific, gamma interferon-secreting T cells following vaccination of BALB/c mice. These immunized mice also exhibited specific in vivo protection against subsequent challenge with a recombinant L. monocytogenes strain (TC-LNS3) expressing the NS3 protein. Notably, sublethal infection of naive mice with strain TC-LNS3 induced similar NS3-specific T-cell responses. These findings suggest that recombinant strains of L. monocytogenes expressing HCV antigens should prove useful for evaluating, or even inducing, protective immune responses against HCV antigens.


Assuntos
Hepatite C/prevenção & controle , Listeria monocytogenes/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas não Estruturais Virais/genética
4.
Mar Biotechnol (NY) ; 4(3): 303-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14961263

RESUMO

Genetic immunization has proved effective in a number of applications including vaccination of rainbow trout (Oncorhynchus mykiss) against the fish pathogen infectious hematopoietic necrosis virus. However, injection vaccines, especially in aquaculture, are not as desirable as oral or immersion dosing schemes. In this report we present evidence that attenuated invasive Escherichia coli can infect and deliver plasmid DNA to salmonid fish cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...