Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1333548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449674

RESUMO

The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms.

2.
Arch Virol ; 167(4): 1041-1049, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192015

RESUMO

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, emerged as the cause of a global crisis in 2019. Currently, the main method for identification of SARS-CoV-2 is a reverse transcription (RT)-PCR assay designed to detect viral RNA in oropharyngeal (OP) or nasopharyngeal (NP) samples. While the PCR assay is considered highly specific and sensitive, this method cannot determine the infectivity of the sample, which may assist in evaluation of virus transmissibility from patients and breaking transmission chains. Thus, cell-culture-based approaches such as cytopathic effect (CPE) assays are routinely employed for the identification of infectious viruses in NP/OP samples. Despite their high sensitivity, CPE assays take several days and require additional diagnostic tests in order to verify the identity of the pathogen. We have therefore developed a rapid immunofluorescence assay (IFA) for the specific detection of SARS-CoV-2 in NP/OP samples following cell culture infection. Initially, IFA was carried out on Vero E6 cultures infected with SARS-CoV-2 at defined concentrations, and infection was monitored at different time points. This test was able to yield positive signals in cultures infected with 10 pfu/ml at 12 hours postinfection (PI). Increasing the incubation time to 24 hours reduced the detectable infective dose to 1 pfu/ml. These IFA signals occur before the development of CPE. When compared to the CPE test, IFA has the advantages of specificity, rapid detection, and sensitivity, as demonstrated in this work.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Imunofluorescência , Humanos , Nasofaringe , Pandemias , RNA Viral/genética , Sensibilidade e Especificidade
3.
Vaccine ; 39(48): 7044-7051, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34756612

RESUMO

rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86-97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414330

RESUMO

We report the genome sequences and the identification of genetic variations in eight clinical samples of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Samples were collected from nasopharyngeal swabs of symptomatic and asymptomatic individuals from five care homes for elderly and infirm persons in Israel. The sequences obtained are valuable, as they carry a newly reported nonsynonymous substitution located within the nucleoprotein open reading frame.

5.
BioTech (Basel) ; 10(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-35822799

RESUMO

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) increases the need for a rapid development of efficient vaccines. Among other vaccines in clinical trials, a recombinant VSV-∆G-spike vaccine was developed by the Israel Institute for Biological Research (IIBR) and is being evaluated. The development of an efficient downstream purification process (DSP) enables the vaccine to be advanced to clinical trials. The DSP must eliminate impurities, either process- or product-related, to yield a sufficient product with high purity, potency and quality. To acquire critical information on process restrictions and qualities, the application of in-line monitoring is vital and should significantly impact the process yield, product quality and economy of the entire process. Here, we describe an in-line monitoring technique that was applied in the DSP of the VSV-∆G-spike vaccine. The technique is based on determining the concentrations of metabolites, nutrients and a host cell protein using the automatic chemistry analyzer, Cobas Integra 400 Plus. The analysis revealed critical information on process parameters and significantly impacted purification processes. The technique is rapid, easy and efficient. Adopting this technique during the purification process improves the process yield and the product quality and enhances the economy of the entire downstream process for biotechnology and bio pharmaceutical products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...