Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
NPJ Syst Biol Appl ; 10(1): 34, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565568

RESUMO

Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network, disable certain cellular functions. The traditional search for MCSs within genome-scale metabolic models (GSMMs) targets cellular growth, identifies reaction sets resulting in a lethal phenotype if disrupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets. Using the dual link between MCSs and Elementary Flux Modes (EFMs), our logic programming-based tool aspefm was able to compute MCSs of any size from GSMMs in acceptable run times. The tool demonstrated better performance when computing large-sized MCSs than the mixed-integer linear programming methods. We applied the new MCSs methodology to a medically-relevant consortium model of two cross-feeding bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. aspefm constraints were used to bias the computation of MCSs toward exchanged metabolites that could complement lethal phenotypes in individual species. We found that interspecies metabolite exchanges could play an essential role in rescuing single-species growth, for instance inosine could complement lethal reaction knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both bacteria. Finally, MCSs were used to derive a list of promising enzyme targets for consortium-level therapeutic applications that cannot be circumvented via interspecies metabolite exchange.


Assuntos
Algoritmos , Infecção dos Ferimentos , Humanos , Modelos Biológicos , Redes e Vias Metabólicas/genética , Genoma
2.
MethodsX ; 12: 102540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38268517

RESUMO

Recent studies on the distribution of microplastics in aquatic sediments have deployed different methods and devices for density separation of microplastics from sediments. However, instrument specific limitations have been noted, including their high cost, difficulty in handling, or/and the potential for elevated contamination risk due to their plastic composition. This study improves existing sediment microplastic separation techniques by modifying the commonly used conical shape glass separating funnels. The modification consists in connecting a silicone tube at the base of the funnel, whose opening and closure was manually controlled by a Mohr clamp. This adjustment made to the funnels have effectively mitigated critical clogging problems frequently encountered in density separation units. An experiment was conducted using sand-based sediment spiked with polyamide fragments to validate this method modification. Following a complete extraction protocol with the modification of separating funnels, the microplastic extraction efficiency from sediments was high with a 90% recovery rate. Based on these promising results, future studies should consider naturally diverse substrates, as recovery efficiency may be sediment-dependent. Two key adjustments to the glass separation funnels:•Removal of stopcocks•Use of silicone tubes and Mohr clamps to control sediment release.

3.
J Acoust Soc Am ; 155(1): 229-240, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189469

RESUMO

Impulse responses (IRs) estimation of multi-input acoustic systems is a prerequisite for many audio applications. In this paper, an adaptive identification problem based on the Autostep algorithm is extended to the simultaneous estimation of room IRs for multiple input single output linear time invariant systems without any a priori information. To do so, the proposed algorithm is initially evaluated in a simulated room with several sound sources active at the same time. Finally, an experimental validation is proposed for the cases of a semi-anechoic chamber and an arbitrary room. Special attention is dedicated to the algorithm convergence behavior, considering different meta parameters settings. Results are eventually compared with the other normalized version of the least mean square algorithm.

4.
J Occup Environ Hyg ; 21(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37698510

RESUMO

A procedure was proposed to estimate dermal exposures based on a physiologically based pharmacokinetic (PBPK) model developed in rats. The study examined vapor concentrations ranging from 500 to 10,000 ppm for dibromomethane and 2,500 to 40,000 ppm for bromochloromethane. These concentrations were reconstructed based on chemical blood levels measured in 4 hr, with errors varying from 0.0% to 52.0%. The PBPK approach adequately predicted the blood concentrations and helped simulate contaminant transport through the stratum corneum and distribution in the body compartments. The proposed technique made it possible to estimate the skin absorption time (SAT) obtained from acute inhalation toxicity data. An inverse relationship exists between the SAT and exposure concentration. The method can be helpful in toxicology and risk assessment of hazardous volatile organic compounds.


Assuntos
Compostos Orgânicos Voláteis , Ratos , Animais , Modelos Biológicos , Medição de Risco
5.
Sci Total Environ ; 914: 169504, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145689

RESUMO

Ample evidence indicates that warming affects individuals in plant communities, ultimately threatening biodiversity. Individual plants in communities are also exposed to plant-plant interaction that may affect their performance. However, trait responses to these two constraints have usually been studied separately, while they may influence processes at the ecosystem level. In turn, these ecological modifications may impact the phenotypes of plants through nutrient availability and uptake. We developed an experimental approach based on the macrophyte communities in the ponds of the sub-Antarctic Iles Kerguelen. Individuals of the species Limosella australis were grown under different temperature × plant-plant interaction treatments to assess their trait responses and create litters with different characteristics. The litters were then decomposed in the presence of individual plants at different temperatures to examine effects on ecosystem functioning and potential feedback affecting plant trait values. Leaf resource-acquisition- and -conservation-related traits were altered in the context of temperature × plant-plant interaction. At 13 °C, SLA and leaf C:N were higher under interspecific and intraspecific interactions than without interaction, whereas at 23 °C, these traits increased under intraspecific interaction only. These effects only slightly improved the individual performance, suggesting that plant-plant interaction is an additional selective pressure on individuals in the context of climate warming. The decay rate of litter increased with the Leaf Carbon Content at 13 °C and 18 °C, but decreased at 23 °C. The highest decay rate was recorded at 18 °C. Besides, we observed evidence of positive feedback of the decay rate alone, and in interaction with the temperature, respectively on the leaf C:N and Leaf Dry Matter Content, suggesting that variations in ecological processes affect plant phenotypes. Our findings demonstrate that warming can directly and indirectly affect the evolutionary and ecological processes occurring in aquatic ecosystems through plants.


Assuntos
Ecossistema , Lagoas , Humanos , Regiões Antárticas , Retroalimentação , Plantas , Folhas de Planta/fisiologia
6.
Rapid Commun Mass Spectrom ; 37(19): e9612, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37698152

RESUMO

RATIONALE: Understanding the interactions between marine mammals and their environment is critical for ecological and conservation purposes. Odontocetes offer a continuous record of their life history from birth as recorded in annual increments of their tooth dentine. Because dentine is not remodeled and contains collagen, nitrogen stable isotope compositions (δ15 N) reflect nursing and weaning events, life history traits that would otherwise be impossible to retrieve in such elusive marine animals. Yet, capturing the magnitude and temporal changes in these events is constrained by tooth size and sampling resolution. Moreover, historical and fossil specimens undergo collagen decay, hence the need to develop the measurements of other proxies. METHODS: Here, we present a multiproxy approach to investigate the use of Ca isotope compositions (δ44/42 Ca) in relation to δ15 N and laser ablation profiles for different trace metal (Ba, Mg, Sr, Zn) concentrations across the dentine of a single individual of the common bottlenose dolphin Tursiops truncatus. RESULTS: To help interpret the dentine data, we provide milk elemental compositions and δ44/42 Ca values for two odontocete individuals. We discuss the observed changes in δ44/42 Ca across the dentine as potential markers of birth, weaning interval, incidental ingestion of seawater, trophic level and physiology. Incidental ingestion of seawater during nursing induces a positive offset in δ44/42 Ca values recorded in the early formed dentine. CONCLUSIONS: Life history parameters of individual marine mammals are extremely difficult to retrieve due to limitations in observing specimens in the wild and the methodology presented here offers new ecological and paleoecological perspectives.


Assuntos
Características de História de Vida , Oligoelementos , Animais , Fósseis , Isótopos de Nitrogênio , Dentina , Mamíferos
7.
Environ Sci Technol ; 57(8): 3042-3052, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790328

RESUMO

While microplastic transport, fate, and effects have been a focus of studies globally, the consequences of their presence on ecosystem functioning have not received the same attention. With increasing evidence of the accumulation of microplastics at sediment-water interfaces there is a need to assess their impacts on ecosystem engineers, also known as bioturbators, which have direct and indirect effects on ecosystem health. This study investigated the impact of microplastics on the bioturbator Tubifex tubifex alongside any effects on the biogeochemical processes at the sediment-water interface. Bioturbators were exposed to four sediment microplastic concentrations: 0, 700, 7000, and 70000 particles kg-1 sediment dry weight. Though no mortality was present, a significant response to oxidative stress was detected in tubificid worms after exposure to medium microplastic concentration (7000 particles kg-1 sediment dry weight). This was accompanied by a reduction in worm bioturbation activities assessed by their ability to rework sediment and to stimulate exchange water fluxes at the sediment-water interface. Consequently, the contributions of tubificid worms on organic matter mineralization and nutrient fluxes were significantly reduced in the presence of microplastics. This study demonstrated that environmentally realistic microplastic concentrations had an impact on biogeochemical processes at the sediment-water interface by reducing the bioturbation activities of tubificid worms.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Água Doce , Água , Monitoramento Ambiental
8.
ACS Nano ; 17(3): 1906-1915, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36513374

RESUMO

Almost regular hexagonal arrays of microscopic pyramids consisting of soot nanoparticles are formed on the surface of graphitized hollow filaments, which are resistively heated to ∼1800-2400 °C under an Ar atmosphere containing trace amounts of oxygen (∼300 ppm). At higher temperatures (T > 2300 °C, approximately) the soot particles are represented mainly by multishell carbon nano-onions. The height and width of the pyramids are strongly dependent on the temperature of the resistive heating, diminishing from 5 to 10 µm at T ≈ 1800 °C to ∼1 µm at 2300-2400 °C. Quasi-hexagonal arrays of the micropyramids are organized in the convex "craters" on the surface of the microtubes, which grow with the time of the thermal treatment. The pyramids always point normally to the surface of the craters, except at the boundaries between the craters, where the normal direction is not well-defined. The pyramids are soft and can be easily destroyed by touching them but can be hardened by heating them under an oxygen-free atmosphere. The pyramids are observed only on the exterior surface of the microtubes, not on their inner surface. This suggests that the thermophoretic force generated by a strong temperature gradient near the external surface of the tubes may be the cause of the micropyramid formation. Electrostatic charging of the soot nanoparticles due to thermionic emission may also be relevant to this phenomenon. The micropyramids can function as field emission point sources, as demonstrated with the use of a micronanoprobing station, mounted in a scanning electron microscope.

9.
Environ Microbiol Rep ; 15(2): 80-91, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424842

RESUMO

Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.


Assuntos
Artrópodes , Ascomicetos , Microbiota , Animais , Corantes , Ascomicetos/genética , DNA Fúngico
10.
Microbiome ; 10(1): 138, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038937

RESUMO

BACKGROUND: Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS: Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS: Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.


Assuntos
Aedes , Microbioma Gastrointestinal , Microbiota , Animais , Metabolismo dos Carboidratos , Feminino , Frutose , Masculino
11.
Math Biosci ; 351: 108889, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988791

RESUMO

A mathematical method was developed to study the skin penetration of volatile organic compounds (VOCs) after exposure to a high dose of the substance. While closed-form solutions exist to describe the diffusion and evaporation from small amounts, numerical approaches are often implemented to predict dermal transport involving large doses. This work offers a Laplace transform-based method to estimate the time constant and dynamic and steady-state behaviors. First, the process was divided into two stages, separated by the time it took for excess chemicals to be depleted from the skin surface. Series solutions were written for the percutaneous VOC concentration, absorption and evaporation in the first stage. Application of Laplace transform methods yielded transient profiles after the compound dissipated from the surface of the stratum corneum. In addition, the procedure facilitated the calculation of the time constant and steady-state values. The method was validated using benchtop and fume hood experiments conducted with N,N-diethyl-3-methylbenzamide (DEET) and air velocities of 0.165 m/s and 0.72 m/s, respectively. The increase in the flow rate decreased the total amount of VOC absorbed and reduced the period required for the surface fluid to disappear.


Assuntos
Absorção Cutânea , Compostos Orgânicos Voláteis , Difusão , Cinética , Pele/metabolismo , Compostos Orgânicos Voláteis/metabolismo
12.
J Occup Environ Hyg ; 19(10-11): 603-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969798

RESUMO

Chemical warfare agents are absorbed into the body from various entry routes and may have detrimental effects on human health. As many chemical compounds in this group are lipophilic, the outer layer of the skin is at an elevated risk. This contribution explores the dynamics of skin penetration for risk assessment. A previously validated model was applied to describe how an agent is transported across the stratum corneum following dermal exposure to a finite dose of a chemical. A mathematical construct was implemented for estimating the time constants and the cumulative amount of permeant entering the bloodstream or being released into the environment. Empirical equations were selected to determine the ratio of the steady-state evaporation rate to the steady-state dermal absorption rate and the physicochemical properties of the chemical warfare agents. Wolfram Mathematica was employed to run the simulations. The results from the newly derived expressions for the time constants matched those directly obtained from the validated model. For example, sarin gas had steady-state evaporation to an absorption rate of 991.25, and a total fractional absorption and evaporation of 5.1% and 94.9%, respectively. Combined with occupational exposure limits, the findings can help researchers assess an individual's risk level and develop protection programs.


Assuntos
Substâncias para a Guerra Química , Absorção Cutânea , Humanos , Substâncias para a Guerra Química/metabolismo , Substâncias para a Guerra Química/farmacologia , Pele
13.
Sci Total Environ ; 833: 155123, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35405245

RESUMO

In rivers, scale-dependent feedbacks resulting from physical habitat modifications control the lateral expansion of submerged plant patches, while the mechanisms that limit patch expansion on a longitudinal dimension remain unknown. Our objective was to investigate the effects of patch length on physical habitat modification (i.e., flow velocity, sediment grain size distribution), the consequences for biogeochemical conditions (i.e., accumulation/depletion of nutrients, microbial respiration), and for individual plants (i.e., shoot length). We measured all of these parameters along natural patches of increasing length. These measurements were performed at two sites that differed in mean flow velocity, sediment grain size, and trophic level. The results showed a significant effect of patch length on organic matter content and nutrient concentrations in interstitial water. For the shortest patches sampled, all of these parameters had similar values to those measured at the upstream control position. For longer patches, organic matter content and orthophosphate and ammonium concentrations increased within the patch compared to the upstream bare sediment, whereas nitrate concentrations decreased, suggesting changes in vertical water exchanges and an increase in anaerobic microbial activities. Furthermore, plant height was related to patch length by a quadratic pattern, probably due reduced hydrodynamic stress occurring for increasing patch length, combined with conditions that are less favourable for plants over a threshold length, possibly due to the light limitation or to the high concentration of ammonium that in the concentration range we measured may be toxic for plants. The threshold lengths over which patches influence the nutrient concentrations were reduced for the site with higher nutrient levels. We demonstrated that the plant-induced modifications of the physical habitat exert important effects on biogeochemical conditions, with possible consequences for patch dynamics and ecosystem functioning.


Assuntos
Compostos de Amônio , Ecossistema , Plantas , Rios , Água
14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270506

RESUMO

BackgroundThe diffusion of the SARS-CoV-2 delta (B.1.617.2) variant and the waning of immune response after primary Covid-19 vaccination favoured the breakthrough SARS-CoV-2 infections in vaccinated subjects. To assess the impact of vaccination, we determined the severity of infection in hospitalised patients according to vaccine status. MethodsWe retrospectively analysed data from patients hospitalised in 10 centres with a SARS-CoV-2 infection (delta variant) from July to November 2021: i) all patients who had completed their primary vaccination at least 14 days before hospital admission; and ii) the same number of completely unvaccinated patients. We assessed the impact of vaccination and other risk factors through logistic regression. FindingsWe included 955 patients (474 vaccinated and 481 unvaccinated). Vaccinated patients were significantly older, more frequently males, and with more comorbidities. They were less often admitted for Covid-19 (59{middle dot}3% vs. 75{middle dot}1%, p<0{middle dot}001), showed fewer lung lesions, and required oxygen less frequently (57{middle dot}5% vs. 73{middle dot}0%, p<0{middle dot}001), at a lower flow (3{middle dot}0 vs. 6{middle dot}0 L/min, p<0{middle dot}001), and for a shorter duration (3 vs. 6 days, p<0{middle dot}001). They less frequently required intensive care unit admission (16{middle dot}2 % vs. 36{middle dot}0 %, p<0{middle dot}001). Mortality at day 28 was not different between the two groups (16{middle dot}7% vs. 12.2%, p=0{middle dot}075), but multivariate logistic regression showed that vaccination significantly decreased the risk of negative outcomes, including mortality, even when considering older patients, and those with comorbidities. ConclusionsAmong patients hospitalised with a delta variant SARS-CoV-2 infection, vaccination was associated with less severe forms, even in the presence of comorbidities.

15.
Insect Sci ; 29(1): 276-288, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33913250

RESUMO

Species and nestmate recognition in social insects occurs mostly through cuticular hydrocarbons acting as chemical cues. These compounds generate a colony-specific odor profile depending on genetic and environmental factors. Species and nestmate recognition results in specific behavioral responses, regulating the level of aggression toward other individuals during an interaction. Although species discrimination and recognition cues have been poorly studied in the context of interspecific hybridization, such systems offer an opportunity to further investigate the influence of heritable and environmental factors on recognition. We explored the strength of discrimination in a hybrid zone between two ant species-Tetramorium immigrans and T. caespitum-by comparing cuticular hydrocarbon profiles and measuring intra- and interspecific worker aggression in both areas of sympatry and areas of allopatry among species. Species cuticular hydrocarbon profiles were well-differentiated and interspecific aggression was high, revealing highly discriminating species recognition cues. Hybrids' cuticular hydrocarbon profiles consisted of a mixture of the parental bouquets, but also exhibited hybrid-specific patterns. Behavioral assays showed that T. immigrans is as aggressive toward hybrids as toward heterospecifics. Finally, aggression between heterospecific workers was lower when interacting individuals came from areas of sympatry among species than from areas of allopatry. Taken as a whole, these findings paint a particularly complex picture of the recognition system in T. immigrans, T. caespitum, and their hybrids, and highlight that hybrid zones afford a still underexplored opportunity for investigating recognition mechanisms and discrimination between species.


Assuntos
Formigas , Agressão , Animais , Sinais (Psicologia) , Hibridização Genética , Hidrocarbonetos
16.
Eur J Pharm Sci ; 167: 105924, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289340

RESUMO

The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (D3Ss) offer unique advantages, such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and the level of patient noncompliance. Furthermore, D3Ss find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally. The biophysical model is physiologically/biologically inspired and combines a holistic model of healthy skin with whole-body physiology-based pharmacokinetics through the dermis microcirculation. The model also includes the effects of chemical penetration enhancers and hair follicles on transdermal transport. The model-predicted permeation and pharmacokinetics of select compounds were validated using in vivo data reported in the literature. We conjecture that the integrated model can be used to gather insights into the permeation and systemic absorption of transdermal formulations (including cosmetic products) released from novel depots and to optimize delivery systems. Furthermore, the model can be extended to diseased skin with parametrization and structural adjustments specific to skin diseases.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Pele/metabolismo
17.
Sci Rep ; 11(1): 13232, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168191

RESUMO

Palm Oil Mill Effluents (POME) are complex fermentative substrates which habour diverse native microbial contaminants. However, knowledge on the microbiota community shift caused by the anthropogenic effects of POME in the environment is up to date still to be extensively documented. In this study, the bacterial and archaeal communities of POME from two palm oil processing systems (artisanal and industrial) were investigated by Illumina MiSeq Platform. Despite the common characteristics of these wastewaters, we found that their microbial communities were significantly different with regard to their diversity and relative abundance of their different Amplicon Sequence Variants (ASV). Indeed, POME from industrial plants harboured as dominant phyla Firmicutes (46.24%), Bacteroidetes (34.19%), Proteobacteria (15.11%), with the particular presence of Spirochaetes, verrucomicrobia and Synergistetes, while those from artisanal production were colonized by Firmicutes (92.06%), Proteobacteria (4.21%) and Actinobacteria (2.09%). Furthermore, 43 AVSs of archaea were detected only in POME from industrial plants and assigned to Crenarchaeota, Diapherotrites, Euryarchaeota and Nanoarchaeaeota phyla, populated mainly by many methane-forming archaea. Definitively, the microbial community composition of POME from both type of processing was markedly different, showing that the history of these ecosystems and various processing conditions have a great impact on each microbial community structure and diversity. By improving knowledge about this microbiome, the results also provide insight into the potential microbial contaminants of soils and rivers receiving these wastewaters.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Resíduos Industriais , Microbiota/genética , Óleo de Palmeira/isolamento & purificação , RNA Ribossômico 16S/genética , Archaea/genética , Indústria Química , Côte d'Ivoire , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase
18.
Sci Total Environ ; 773: 145061, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940713

RESUMO

Few studies have addressed how the diversity of basal resources change with stream regulation and the potential consequences on river biota. We sampled invertebrates above and below a series of dams, over two years, at both downwelling and upwelling zones. In each zone, we recorded the daily temperature and flow variations, estimated the algal development, measured the available resources, and analysed carbon and nitrogen stable isotope compositions of the invertebrate community. The number of hydrological pulses were typically higher below the dams than above the dams especially during high-flow periods whereas the groundwater outlets had minor effects on invertebrate assemblages. Invertebrate abundance, richness and diversity tended to decrease below the dams. Co-inertia analysis showed that flow and temperature variations, and eutrophication explained most of the variance in the invertebrate assemblages, which comprised a higher number of resilient taxa below than above the dams. The proportions of pesticide-sensitive invertebrates were lower below the dams and ovoviviparous and more generalist taxa were prominent. We did not observe the expected CPOM decrease and FPOM increase downstream. Accordingly, the proportions of each functional feeding group were remarkably similar above and below the dams despite the long distance between the sectors (>100 kms). The diversity of basal resources used within assemblages progressively increased downstream above dams. In contrast, the diversity of resources used by organisms below the dams decreased from upstream to downstream suggesting a significant influence of flow regulation on aquatic food webs. Finally, the shorter trophic chains for the invertebrate assemblages below the dams suggests that the effects of stream regulation and eutrophication induced a simplification of food webs. To our knowledge, this study is the first to connect taxonomic and functional trait changes in response to multiple stressors with the associated modifications in isotopic niches within aquatic invertebrate assemblages. CONTEXT: Understanding how stream regulation and associated anthropogenic pressures act on aquatic assemblages and trophic niches is necessary to guide management actions. GOAL: We aimed to investigate the functional responses (traits and trophic niches) of aquatic invertebrate assemblages to stream regulation and eutrophication. METHODS: We used univariate and multivariate analyses to compare the invertebrate assemblages above and below the dams and to assess the contributions of hydrology (including groundwater supplies to the river), temperature and eutrophication to the variability in the composition of invertebrate assemblages. We also considered the relative utilization of a selected set of traits describing invertebrate resilience, resistance and specialization to address the potential functional effects of stream regulation on invertebrate assemblages. Finally, carbon and nitrogen isotope analyses allowed us to characterize the length and width of invertebrate assemblage food webs as related to the availability and diversity of basal resources. RESULTS: Invertebrate abundance and richness generally decreased below the dams, with the highest impacts on insect taxa. Co-inertia analysis showed that stream regulation and eutrophication were main drivers of the aquatic invertebrate assemblages. The analysis separated the sites above and below the dams according to flow and temperature variation, whereas eutrophication appeared as a secondary stressor that separated the sites within each sector. Furthermore, the series of dams resulted in (i) a higher proportion of resilient (e.g., multivoltine) and resistant (ovoviviparous) taxa and a majority of generalists in assemblages below dams, (ii) an impact on the classical dynamics of CPOM (decrease) and FPOM (increase) sources from upstream to downstream, and (iii) a reduction in the diversity of resource use and in the trophic chain length of invertebrate assemblages below dams. The cooler and less oxygenated upwelling zones had lower invertebrate abundance; however, contrary to our expectation, the variation in the groundwater supply did not affect the composition of epigean invertebrate assemblages. CONCLUSION: This study provides insights about the impacts of flow regime alteration and eutrophication on food webs that may have been caused by regulation of permanent streams. To our knowledge, this is the first to connect taxonomic and functional trait changes in response to multiple stressors with the associated modifications in energy fluxes in aquatic invertebrate assemblages. This study suggests that bed stability, which is associated with a reduction in channel mobility below the dams and with moderate eutrophication, may provide the shelter and resources that can locally favour invertebrate assemblage dynamics and lessen the effects of flow regulation. In addition, the study suggests that the biological trait-based approach and isotope analysis are complementary approaches for addressing ecosystem functioning. The relative utilization of traits indicates the functional potential of aquatic invertebrate assemblages to face multiple stressors whereas isotope analysis is an expression of the actual effect of the stressors on the trophic structure of aquatic invertebrate assemblages.


Assuntos
Ecossistema , Invertebrados , Animais , Cadeia Alimentar , Hidrologia , Rios
19.
IEEE Trans Biomed Eng ; 68(10): 3039-3047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625974

RESUMO

Obstructive sleep apnea is a common sleep disorder with a high prevalence and often accompanied by significant snoring activity. To diagnose this condition, polysomnography is the standard method, where a neck microphone could be added to record tracheal sounds. These can then be used to study the characteristics of breathing, snoring or apnea. In addition cardiac sounds, also present in the acquired data, could be exploited to extract heart rate. The paper presents new algorithms for estimating heart rate from tracheal sounds, especially in very loud snoring environment. The advantage is that it is possible to reduce the number of diagnostic devices, especially for compact home applications. Three algorithms are proposed, based on optimal filtering and cross-correlation. They are tested firstly on one patient presenting significant pathology of apnea syndrome, with a recording of 509 min. Secondly, an extension to a database of 16 patients is proposed (16 hours of recording). When compared to a reference ECG signal, the final results obtained from tracheal sounds reach an accuracy of 81% to 98% and an RMS error from 1.3 to 4.2 bpm, according to the level of snoring and to the considered algorithm.


Assuntos
Sons Respiratórios , Síndromes da Apneia do Sono , Frequência Cardíaca , Humanos , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Ronco/diagnóstico
20.
Environ Pollut ; 268(Pt A): 115750, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33172701

RESUMO

Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics. This review provides a comprehensive synthesis of key research challenges in analysing the environmental fate and transport of microplastics in freshwater ecosystems, including the identification of hydrological, sedimentological and particle property controls on microplastic accumulation in aquatic ecosystems. This mechanistic analysis outlines the dominant pathways for exposure to microplastics in freshwater ecosystems and identifies potentially critical uptake mechanisms and entry pathways for microplastics and associated contaminants into aquatic food webs as well as their risk to accumulate and biomagnify. We identify seven key research challenges that, if overcome, will permit the advancement beyond current conceptual limitations and provide the mechanistic process understanding required to assess microplastic exposure, uptake, hazard, and overall risk to aquatic systems and humans, and provide key insights into the priority impact pathways in freshwater ecosystems to support environmental management decision making.


Assuntos
Plásticos , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Água Doce , Humanos , Microplásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...