Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377138

RESUMO

To facilitate the characterization of unlabeled induced pluripotent stem cells (iPSCs) during culture and expansion, we developed an AI pipeline for nuclear segmentation and mitosis detection from phase contrast images of individual cells within iPSC colonies. The analysis uses a 2D convolutional neural network (U-Net) plus a 3D U-Net applied on time lapse images to detect and segment nuclei, mitotic events, and daughter nuclei to enable tracking of large numbers of individual cells over long times in culture. The analysis uses fluorescence data to train models for segmenting nuclei in phase contrast images. The use of classical image processing routines to segment fluorescent nuclei precludes the need for manual annotation. We optimize and evaluate the accuracy of automated annotation to assure the reliability of the training. The model is generalizable in that it performs well on different datasets with an average F1 score of 0.94, on cells at different densities, and on cells from different pluripotent cell lines. The method allows us to assess, in a non-invasive manner, rates of mitosis and cell division which serve as indicators of cell state and cell health. We assess these parameters in up to hundreds of thousands of cells in culture for more than 36 hours, at different locations in the colonies, and as a function of excitation light exposure.


Assuntos
Células-Tronco Pluripotentes Induzidas , Reprodutibilidade dos Testes , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular
2.
J Biomed Mater Res A ; 111(1): 106-117, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194510

RESUMO

The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Alicerces Teciduais/química , Diferenciação Celular , Matriz Extracelular/metabolismo , Células Cultivadas , Engenharia Tecidual/métodos , Células da Medula Óssea
3.
J Clin Invest ; 130(2): 1010-1023, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31714897

RESUMO

Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and noninvasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to noninvasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell-derived retinal pigment epithelial cells (iPSC-RPE). QBAM images of iPSC-RPE were used to train DNNs that predicted iPSC-RPE monolayer transepithelial resistance, predicted polarized vascular endothelial growth factor (VEGF) secretion, and matched iPSC-RPE monolayers to the stem cell donors. DNN predictions were supplemented with traditional machine-learning algorithms that identified shape and texture features of single cells that were used to predict tissue function and iPSC donor identity. These results demonstrate noninvasive cell therapy characterization can be achieved with QBAM and machine learning.


Assuntos
Diferenciação Celular , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas , Microscopia , Epitélio Pigmentado da Retina , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
4.
Biomed Mater ; 13(2): 025012, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29072579

RESUMO

In living systems, it is frequently stated that form follows function by virtue of evolutionary pressures on organism development, but in the study of how functions emerge at the cellular level, function often follows form. We study this chicken versus egg problem of emergent structure-property relationships in living systems in the context of primary human bone marrow stromal cells cultured in a variety of microenvironments that have been shown to cause distinct patterns of cell function and differentiation. Through analysis of a publicly available catalog of three-dimensional (3D) cell shape data, we introduce a family of metrics to characterize the 'form' of the cell populations that emerge from a variety of diverse microenvironments. In particular, measures of form are considered that are expected to have direct significance for cell function, signaling and metabolic activity: dimensionality, polarizability and capacitance. Dimensionality was assessed by an intrinsic measure of cell shape obtained from the polarizability tensor. This tensor defines ellipsoids for arbitrary cell shapes and the thinnest dimension of these ellipsoids, P 1, defines a reference minimal scale for cells cultured in a 3D microenvironment. Polarizability governs the electric field generated by a cell, and determines the cell's ability to detect electric fields. Capacitance controls the shape dependence of the rate at which diffusing molecules contact the surface of the cell, and this has great significance for inter-cellular signaling. These results invite new approaches for designing scaffolds which explicitly direct cell dimensionality, polarizability and capacitance to guide the emergence of new cell functions derived from the acquired form.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Microambiente Celular , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Algoritmos , Animais , Núcleo Celular/metabolismo , Forma Celular , Eletricidade , Fibrinogênio/química , Humanos , Camundongos , Microscopia Confocal , Nanofibras/química , Poliestirenos/química , Probabilidade , Transdução de Sinais , Trombina/química
5.
BMC Bioinformatics ; 18(1): 526, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183290

RESUMO

BACKGROUND: Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun coat, large microfiber, and medium microfiber). Our analysis of the acquired terabyte-sized collection is motivated by the need to understand the nature of the shape dimensionality (1D vs 2D vs 3D) of cell-scaffold interactions relevant to tissue engineers that grow cells on biomaterial scaffolds. RESULTS: We designed five statistical and three geometrical contact models, and then down-selected them to one from each category using a validation approach based on physically orthogonal measurements to CLSM. The two selected models were applied to 414 z-stacks with three scaffold types and all contact results were visually verified. A planar geometrical model for the spun coat scaffold type was validated from atomic force microscopy images by computing surface roughness of 52.35 nm ±31.76 nm which was 2 to 8 times smaller than the CLSM resolution. A cylindrical model for fiber scaffolds was validated from multi-view 2D scanning electron microscopy (SEM) images. The fiber scaffold segmentation error was assessed by comparing fiber diameters from SEM and CLSM to be between 0.46% to 3.8% of the SEM reference values. For contact verification, we constructed a web-based visual verification system with 414 pairs of images with cells and their segmentation results, and with 4968 movies with animated cell, scaffold, and contact overlays. Based on visual verification by three experts, we report the accuracy of cell segmentation to be 96.4% with 94.3% precision, and the accuracy of cell-scaffold contact for a statistical model to be 62.6% with 76.7% precision and for a geometrical model to be 93.5% with 87.6% precision. CONCLUSIONS: The novelty of our approach lies in (1) representing cell-scaffold contact sites with statistical intensity and geometrical shape models, (2) designing a methodology for validating 3D geometrical contact models and (3) devising a mechanism for visual verification of hundreds of 3D measurements. The raw and processed data are publicly available from https://isg.nist.gov/deepzoomweb/data/ together with the web -based verification system.


Assuntos
Imageamento Tridimensional/métodos , Modelos Biológicos , Alicerces Teciduais/química , Algoritmos , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Humanos , Internet , Masculino , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Interface Usuário-Computador , Microtomografia por Raio-X , Adulto Jovem
6.
ACS Biomater Sci Eng ; 3(10): 2302-2313, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33445289

RESUMO

Many biomaterial scaffolds have been advanced to provide synthetic cell niches for tissue engineering and drug screening applications; however, current methods for comparing scaffold niches focus on cell functional outcomes or attempt to normalize materials properties between different scaffold formats. We demonstrate a three-dimensional (3D) cellular morphotyping strategy for comparing biomaterial scaffold cell niches between different biomaterial scaffold formats. Primary human bone marrow stromal cells (hBMSCs) were cultured on 8 different biomaterial scaffolds, including fibrous scaffolds, hydrogels, and porous sponges, in 10 treatment groups to compare a variety of biomaterial scaffolds and cell morphologies. A bioinformatics approach was used to determine the 3D cellular morphotype for each treatment group by using 82 shape metrics to analyze approximately 1000 cells. We found that hBMSCs cultured on planar substrates yielded planar cell morphotypes, while those cultured in 3D scaffolds had elongated or equiaxial cellular morphotypes with greater height. Multivariate analysis was effective at distinguishing mean shapes of cells in flat substrates from cells in scaffolds, as was the metric L1-depth (the cell height along its shortest axis after aligning cells with a characteristic ellipsoid). The 3D cellular morphotyping technique enables direct comparison of cellular microenvironments between widely different types of scaffolds and design of scaffolds based on cell structure-function relationships.

7.
BMC Bioinformatics ; 16: 330, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472075

RESUMO

BACKGROUND: The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. METHODS: We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. RESULTS: The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. CONCLUSIONS: The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.


Assuntos
Algoritmos , Imagem Óptica , Animais , Automação , Humanos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...