Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 14(1): e12326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282192

RESUMO

BACKGROUND: Immunoglobulin E (IgE) and immunoglobulin G4 (IgG4) to peanut and its components may influence the clinical reactivity to peanut. Allergen-specific immunotherapy is known for modifying both IgE and IgG4. Peanut oral immunotherapy may influence these serological parameters. METHODS: Exploratory analyses of serological data from participants receiving peanut (Arachis hypogaea) allergen powder-dnfp (PTAH) and placebo in the double-blind, randomized, phase 3 PALISADE trial were conducted to evaluate potential relationships between peanut-specific and peanut component-specific (Ara h 1, Ara h 2, Ara h 3, Ara h 6, Ara h 8, and Ara h 9) IgE and IgG4 levels and clinical outcomes. RESULTS: A total of 269 participants (PTAH, n = 202; placebo, n = 67) were analyzed. No relationship was observed between specific IgE and IgG4 levels at screening and maximum tolerated peanut protein dose during screening or response status during exit double-blind placebo-controlled food challenge (DBPCFC). In PTAH-treated participants, no relationship was observed between IgE and IgG4 levels at screening and maximum symptom severity during exit DBPCFC. Postscreening ratios (ie, postscreening/screening) in the PTAH group were significant at the end of updosing and exit visit for most components. Postscreening changes in specific IgE levels were more pronounced with PTAH versus placebo for most components. CONCLUSIONS: Specific IgE and IgG4 levels at screening are not correlated with screening or exit DBPCFC results, and are not predictive of clinical response to PTAH. Peanut (Arachis hypogaea) allergen powder-dnfp contains the relevant and immunodominant allergens, inducing immunological changes with the treatment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02635776.

2.
Front Allergy ; 4: 1279290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093814

RESUMO

Background: Oral immunotherapy (OIT) with peanut (Arachis hypogaea) allergen powder-dnfp (PTAH; Aimmune Therapeutics) is an FDA-approved treatment to desensitize peanut allergic participants. Objective: Here we assessed shifts in IgE and IgG4 binding to peanut allergens and their epitopes recognized by United States (US) peanut allergic participants (n = 20) enrolled in phase 3 PTAH OIT clinical trials. Methods: Pre- and post- trial participant sera were collected approximately 12 months apart and tested for IgE binding to intact peanut proteins via ImmunoCAP ISAC immunoassays. IgE and IgG4 linear epitopes were identified based on binding to synthetic overlapping 15-mer linear peptides of 10 peanut allergens (Ara h 1-11) synthesized on microarray slides. Results: Statistically significant decreases in IgE binding were identified for intact Ara h 2, 3, and 6, and known and newly identified IgE epitopes were shown to exhibit shifts towards IgG4 binding post-OIT, with most linear peptides having increased IgG4 binding after treatment with PTAH. While PTAH does not seem to alter the actual peptide binding patterns significantly after one year of treatment, the IgE and IgG4 binding ratios and intensity are altered. Conclusion: At a population level, the linear IgE and IgG4 epitopes of 10 peanut allergens overlap and that increase in IgG4 with OIT results in displacement of IgE binding to both conformational and linear epitopes. Furthermore, it appears as though the increase in IgG4 is more important to achieve desensitization at the 12-month timepoint than the decrease in IgE. This type of knowledge can be useful in the identification of IgE and IgG4-binding allergen and peptide biomarkers that may indicate desensitization or sustained unresponsiveness of allergic individuals to peanut.

3.
Commun Chem ; 6(1): 234, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898658

RESUMO

Pregnancy-Associated Plasma Protein A isoforms, PAPP-A and PAPP-A2, are metalloproteases that cleave insulin-like growth factor binding proteins (IGFBPs) to modulate insulin-like growth factor signaling. The structures of homodimeric PAPP-A in complex with IGFBP5 anchor peptide, and inhibitor proteins STC2 and proMBP have been recently reported. Here, we present the single-particle cryo-EM structure of the monomeric, N-terminal LG, MP, and the M1 domains (with the exception of LNR1/2) of human PAPP-A2 to 3.13 Å resolution. Our structure together with functional studies provides insight into a previously reported patient mutation that inactivates PAPP-A2 in a distal region of the protein. Using a combinational approach, we suggest that PAPP-A2 recognizes IGFBP5 in a similar manner as PAPP-A and show that PAPP-A2 cleaves IGFBP5 less efficiently due to differences in the M2 domain. Overall, our studies characterize the cleavage mechanism of IGFBP5 by PAPP-A2 and shed light onto key differences with its paralog PAPP-A.

4.
Front Allergy ; 3: 1090114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698378

RESUMO

Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity. Synthetic overlapping 15-amino acid-long peptides offset by five amino acids from Ara h 9, Jug r 3, and Pru p 3 were synthesized, and the intact proteins were attached to microarray slides. Sera from 55 peanut-allergic individuals from the US were tested for IgE binding to the linear peptides and IgE binding to intact proteins using immunofluorescence. For comparison, sera from 17 peanut-allergic individuals from Spain were also tested. Similar IgE binding profiles for Ara h 9, Jug r 3, and Pru p 3 were identified between the US and Spain, with slight differences. Certain regions of the proteins, specifically helices 1 and 2 and the C-terminal coil, were recognized by the majority of the sera more often than other regions of the proteins. While serum IgE from peanut-allergic individuals in the US binds to peptides of Ara h 9 and its homologs, only IgE from the Spanish subjects bound to the intact LTPs. This study identifies Ara h 9, Jug r 3, and Pru p 3 linear epitopes that were previously unidentified using sera from peanut-allergic individuals from the US and Spain. Certain regions of the LTPs are recognized more often in US subjects, indicating that they represent conserved and possible cross-reactive regions. The location of the epitopes in 3D structure models of the LTPs may predict the location of potential conformational epitopes bound by a majority of the Spanish patient sera. These findings are potentially important for development of peptide or protein-targeting diagnostic and therapeutic tools for food allergy.

5.
Antimicrob Agents Chemother ; 60(4): 2292-301, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833157

RESUMO

Many serious bacterial infections are difficult to treat due to biofilm formation, which provides physical protection and induces a sessile phenotype refractory to antibiotic treatment compared to the planktonic state. A key structural component of biofilm is extracellular DNA, which is held in place by secreted bacterial proteins from the DNABII family: integration host factor (IHF) and histone-like (HU) proteins. A native human monoclonal antibody, TRL1068, has been discovered using single B-lymphocyte screening technology. It has low-picomolar affinity against DNABII homologs from important Gram-positive and Gram-negative bacterial pathogens. The disruption of established biofilm was observedin vitroat an antibody concentration of 1.2 µg/ml over 12 h. The effect of TRL1068in vivowas evaluated in a murine tissue cage infection model in which a biofilm is formed by infection with methicillin-resistantStaphylococcus aureus(MRSA; ATCC 43300). Treatment of the established biofilm by combination therapy of TRL1068 (15 mg/kg of body weight, intraperitoneal [i.p.] administration) with daptomycin (50 mg/kg, i.p.) significantly reduced adherent bacterial count compared to that after daptomycin treatment alone, accompanied by significant reduction in planktonic bacterial numbers. The quantification of TRL1068 in sample matrices showed substantial penetration of TRL1068 from serum into the cage interior. TRL1068 is a clinical candidate for combination treatment with standard-of-care antibiotics to overcome the drug-refractory state associated with biofilm formation, with potential utility for a broad spectrum of difficult-to-treat bacterial infections.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Biofilmes/efeitos dos fármacos , Corpos Estranhos/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Linfócitos B/química , Linfócitos B/citologia , Linfócitos B/imunologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Daptomicina/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Mapeamento de Epitopos , Feminino , Corpos Estranhos/microbiologia , Expressão Gênica , Injeções Intraperitoneais , Fatores Hospedeiros de Integração/antagonistas & inibidores , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Plâncton/efeitos dos fármacos , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Alinhamento de Sequência , Análise de Célula Única , Infecções Estafilocócicas/microbiologia
6.
J Med Chem ; 54(6): 1667-81, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21341682

RESUMO

Through the application of TRAP (target-related affinity profiling), we identified a novel class of heteroaroylphenylureas that inhibit human CCL2-induced chemotaxis of monocytes/macrophages both in vitro and in vivo. This inhibition was concentration-dependent and selective with regard to other chemokines. The compounds, however, did not antagonize the binding of (125)I-labeled CCL2 to the CCR2 receptor nor did they block CCR2-mediated signal transduction responses such as calcium mobilization. Optimization of early leads for potency and pharmacokinetic parameters resulted in the identification of 17, a potent inhibitor of chemotaxis (IC(50) = 80 nM) with excellent oral bioavailability in rats (F = 60%). Compound 17 reduced swelling and joint destruction in two rat models of rheumatoid arthritis and delayed disease onset and produced near complete resolution of symptoms in a mouse model of multiple sclerosis.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Quimiocina CCL2/antagonistas & inibidores , Compostos de Fenilureia/síntese química , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Disponibilidade Biológica , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células CHO , Linhagem Celular Tumoral , Quimiotaxia/efeitos dos fármacos , Cricetinae , Cricetulus , Humanos , Articulações/efeitos dos fármacos , Articulações/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Esclerose Múltipla/tratamento farmacológico , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/farmacologia , Ensaio Radioligante , Ratos , Receptores CCR2/metabolismo , Relação Estrutura-Atividade
7.
J Med Chem ; 47(20): 4875-80, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15369391

RESUMO

We used protein affinity fingerprints to discover structurally novel inhibitors of cyclooxygenase-1 (COX-1) by screening a selected number of compounds, thus providing an alternative to extensive screening. From the affinity fingerprints of 19 known COX-1 inhibitors, a computational model for COX-1 inhibition was constructed and used to select candidate inhibitors from our compound library to be tested in the COX-1 assay. Subsequent refinement of the model by including affinity fingerprints of inactive compounds identified three molecules that were more potent than ibuprofen, a commonly used COX-1 inhibitor. These compounds are structurally distinct from those used to build the model and were discovered by testing only 62 library compounds. The discovery of these leads demonstrates the efficiency with which affinity fingerprints can identify novel bioactive chemotypes from known drugs.


Assuntos
Técnicas de Química Combinatória/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Isoenzimas/antagonistas & inibidores , Modelos Teóricos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1 , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ibuprofeno/química , Ibuprofeno/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Estudos Prospectivos , Prostaglandina-Endoperóxido Sintases , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...