Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480711

RESUMO

Adenovirus vector vaccines have been widely and successfully deployed in response to COVID-19. However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared to other technologies. Here, we describe a system to enable modular decoration of adenovirus capsid surfaces with protein antigens and demonstrate induction of potent humoral immunity against these displayed antigens. Ligand attachment via a covalent isopeptide bond was achieved in a rapid and spontaneous reaction, requiring simple co-incubation of ligand and vector components. We used a recently described protein superglue, DogTag/DogCatcher, which is similar to the widely used SpyTag/SpyCatcher ligation system but performs better in loop structures. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using a variety of ligands and vector infectivity was retained in each case. Capsid decoration shielded particles from anti-adenovirus neutralizing antibodies. In prime-boost regimens, proof-of-concept COVID-19 adenovirus vaccines decorated with the receptor-binding domain (RBD) of SARS-CoV-2 spike induced >10-fold higher SARS-CoV-2 neutralization titers compared to an undecorated adenovirus vector encoding spike. Importantly, decorated vectors retained robust T cell immunogenicity to encoded antigens, a key hallmark of adenovirus vector vaccines. We propose capsid decoration via protein superglue-mediated covalent ligation as a novel strategy to improve the efficacy and boostability of adenovirus-based vaccines and therapeutics. One Sentence SummaryDecorating the capsid surface of adenovirus vaccine vectors using a spontaneous protein superglue induces potent pathogen-specific immunity

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260837

RESUMO

Although recent epidemiological data suggest that pneumococci may contribute to the risk of SARS-CoV-2 disease, secondary pneumococcal pneumonia has been reported as infrequent. This apparent contradiction may be explained by interactions of SARS-CoV-2 and pneumococcus in the upper airway, resulting in the escape of SARS-CoV-2 from protective host immune responses. Here, we investigated the relationship of these two respiratory pathogens in two distinct cohorts of a) healthcare workers with asymptomatic or mildly symptomatic SARS-CoV-2 infection identified by systematic screening and b) patients with moderate to severe disease who presented to hospital. We assessed the effect of co-infection on host antibody, cellular and inflammatory responses to the virus. In both cohorts, pneumococcal colonisation was associated with diminished anti-viral immune responses, which affected primarily mucosal IgA levels among individuals with mild or asymptomatic infection and cellular memory responses in infected patients. Our findings suggest that S. pneumoniae modulates host immunity to SARS-CoV-2 and raises the question if pneumococcal carriage also enables immune escape of other respiratory viruses through a similar mechanism and facilitates reinfection occurrence.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432402

RESUMO

Basigin, or CD147, has been reported as a co-receptor used by SARS-CoV-2 to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes where it is bound by one of the parasites invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (either expressed in E. coli or mammalian cells). Given the immense interest in SARS-CoV-2 therapeutic targets, we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. ImportanceReducing the mortality and morbidity associated with COVID-19 remains a global health priority. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a co-receptor for SARS-COV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a co-receptor and plausibility as a therapeutic target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA