Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8522, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129411

RESUMO

Recalling a salient experience provokes specific behaviors and changes in the physiology or internal state. Relatively little is known about how physiological memories are encoded. We examined the neural substrates of physiological memory by probing CRHPVN neurons of mice, which control the endocrine response to stress. Here we show these cells exhibit contextual memory following exposure to a stimulus with negative or positive valence. Specifically, a negative stimulus invokes a two-factor learning rule that favors an increase in the activity of weak cells during recall. In contrast, the contextual memory of positive valence relies on a one-factor rule to decrease activity of CRHPVN neurons. Finally, the aversive memory in CRHPVN neurons outlasts the behavioral response. These observations provide information about how specific physiological memories of aversive and appetitive experience are represented and demonstrate that behavioral readouts may not accurately reflect physiological changes invoked by the memory of salient experiences.


Assuntos
Hormônio Liberador da Corticotropina , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Estresse Fisiológico
2.
Bio Protoc ; 10(22): e3826, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659478

RESUMO

There has been a clear movement in recent years towards the adoption of more naturalistic experimental regimes for the study of behavior and its underlying neural architecture. Here we provide a protocol that allows experimenters working with mice, to mimic a looming and advancing predatory threat from the sky. This approach is easy to implement and can be combined with sophisticated neural recordings that allow access to real-time activity during behavior. This approach offers another option in a battery of tests that allow for a more comprehensive understanding of defensive behaviors.

3.
Neurophotonics ; 5(2): 025006, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29687037

RESUMO

Fiber photometry uses genetically encoded optical reporters to link specific cellular activity in stereotaxically targeted brain structures to specific behaviors. There are still a number of barriers that have hindered the widespread adoption of this approach. This includes cost, but also the high-levels of light required to excite the fluorophore, limiting commercial systems to the investigation of short-term transients in neuronal activity to avoid damage of tissue by light. Here, we present a cost-effective optoelectronic system for in vivo fiber photometry that achieves high-sensitivity to changes in fluorescence intensity, enabling detection of optical transients of a popular calcium reporter with excitation powers as low as 100 nW. By realizing a coherent detection scheme and by using a photomultiplier tube as a detector, the system demonstrates reliable study of in vivo neuronal activity, positioning it for future use in the experiments inquiring into learning and memory processes. The system was applied to study stress-evoked calcium transients in corticotropin-releasing hormone neurons in the mouse hypothalamus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...