Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787501

RESUMO

Insufficient insulin secretion to meet metabolic demand results in diabetes. The intracellular flux of Ca2+ into ß-cells triggers insulin release. Since genetics strongly influences variation in islet secretory responses, we surveyed islet Ca2+ dynamics in eight genetically diverse mouse strains. We found high strain variation in response to four conditions: (1) 8 mM glucose; (2) 8 mM glucose plus amino acids; (3) 8 mM glucose, amino acids, plus 10 nM glucose-dependent insulinotropic polypeptide (GIP); and (4) 2 mM glucose. These stimuli interrogate ß-cell function, α- to ß-cell signaling, and incretin responses. We then correlated components of the Ca2+ waveforms to islet protein abundances in the same strains used for the Ca2+ measurements. To focus on proteins relevant to human islet function, we identified human orthologues of correlated mouse proteins that are proximal to glycemic-associated single-nucleotide polymorphisms in human genome-wide association studies. Several orthologues have previously been shown to regulate insulin secretion (e.g. ABCC8, PCSK1, and GCK), supporting our mouse-to-human integration as a discovery platform. By integrating these data, we nominate novel regulators of islet Ca2+ oscillations and insulin secretion with potential relevance for human islet function. We also provide a resource for identifying appropriate mouse strains in which to study these regulators.


Assuntos
Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Ilhotas Pancreáticas/metabolismo , Estudo de Associação Genômica Ampla , Insulina/metabolismo , Glucose/metabolismo , Variação Genética , Aminoácidos/metabolismo
2.
Diabetes ; 72(11): 1621-1628, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552875

RESUMO

G6PC2 is predominantly expressed in pancreatic islet ß-cells where it encodes a glucose-6-phosphatase catalytic subunit that modulates the sensitivity of insulin secretion to glucose by opposing the action of glucokinase, thereby regulating fasting blood glucose (FBG). Prior studies have shown that the G6pc2 promoter alone is unable to confer sustained islet-specific gene expression in mice, suggesting the existence of distal enhancers that regulate G6pc2 expression. Using information from both mice and humans and knowledge that single nucleotide polymorphisms (SNPs) both within and near G6PC2 are associated with variations in FBG in humans, we identified several putative enhancers 3' of G6pc2. One region, herein referred to as enhancer I, resides in the 25th intron of Abcb11 and binds multiple islet-enriched transcription factors. CRISPR-mediated deletion of enhancer I in C57BL/6 mice had selective effects on the expression of genes near the G6pc2 locus. In isolated islets, G6pc2 and Spc25 expression were reduced ∼50%, and Gm13613 expression was abolished, whereas Cers6 and nostrin expression were unaffected. This partial reduction in G6pc2 expression enhanced islet insulin secretion at basal glucose concentrations but did not affect FBG or glucose tolerance in vivo, consistent with the absence of a phenotype in G6pc2 heterozygous C57BL/6 mice.


Assuntos
Glicemia , Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Glicemia/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL
3.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603790

RESUMO

Insulin secretion from pancreatic ß cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that ß cell-specific deletion of Zfp148 (ß-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from ß­Zfp148KO and control mice fed both a chow and a Western-style diet. ß-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. ß-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of ß-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, ß-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving ß cell function that are robust to the metabolic challenge imposed by a Western diet.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Nutrientes , Fatores de Transcrição/metabolismo
4.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491912

RESUMO

The transcription factor NFATC2 induces ß cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced ß cell proliferation, suggesting the FOXP family works to regulate ß cell proliferation in concert with NFATC2. NFATC2 induced ß cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle-associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce ß cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate ß cell proliferation.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Elementos de Resposta , Transcrição Gênica , Animais , Humanos , Camundongos Knockout , Fatores de Transcrição NFATC/genética
5.
Genome Biol ; 22(1): 241, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425882

RESUMO

Genome-wide association studies reveal many non-coding variants associated with complex traits. However, model organism studies largely remain as an untapped resource for unveiling the effector genes of non-coding variants. We develop INFIMA, Integrative Fine-Mapping, to pinpoint causal SNPs for diversity outbred (DO) mice eQTL by integrating founder mice multi-omics data including ATAC-seq, RNA-seq, footprinting, and in silico mutation analysis. We demonstrate INFIMA's superior performance compared to alternatives with human and mouse chromatin conformation capture datasets. We apply INFIMA to identify novel effector genes for GWAS variants associated with diabetes. The results of the application are available at http://www.statlab.wisc.edu/shiny/INFIMA/ .


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Mapeamento Físico do Cromossomo , Animais , Sequência de Bases , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Simulação por Computador , Predisposição Genética para Doença , Genômica , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA-Seq , Estatística como Assunto , Transcriptoma/genética
6.
J Phys Chem B ; 125(33): 9517-9525, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34396779

RESUMO

We used two-dimensional IR bioimaging to study the structural heterogeneity of formalin-fixed mouse pancreas. Images were generated from the hyperspectral data sets by plotting quantities associated with the amide I vibrational mode, which is created by the backbone carbonyl stretch. Images that measure the fundamental vibrational frequencies, cross peaks, and anharmonic shifts are presented. Histograms are generated for each quantity, providing averaged values and distributions around the mean that serve as metrics for protein structures. Images were generated from tissue that had been stored in a formalin fixation for 3, 8, and 48 weeks. Over this period, all three metrics show that that the ß-sheet content of the samples increased, consistent with protein aggregation. Our results indicate that formalin fixation does not entirely arrest the degradation of a protein structure in pancreas tissue.


Assuntos
Formaldeído , Proteínas , Amidas , Animais , Camundongos , Pâncreas/diagnóstico por imagem , Proteólise
7.
Lab Invest ; 101(7): 935-941, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33911188

RESUMO

The etiology of diabetic nephropathy in type 2 diabetes is multifactorial. Sustained hyperglycemia is a major contributor, but additional contributions come from the hypertension, obesity, and hyperlipidemia that are also commonly present in patients with type 2 diabetes and nephropathy. The leptin deficient BTBR ob/ob mouse is a model of type 2 diabetic nephropathy in which hyperglycemia, obesity, and hyperlipidemia, but not hypertension, are present. We have shown that reversal of the constellation of these metabolic abnormalities with leptin replacement can reverse the morphologic and functional manifestations of diabetic nephropathy. Here we tested the hypothesis that reversal specifically of the hypertriglyceridemia, using an antisense oligonucleotide directed against ApoC-III, an apolipoprotein that regulates the interactions of VLDL (very low density lipoproteins) with the LDL receptor, is sufficient to ameliorate the nephropathy of Type 2 diabetes. Antisense treatment resulted in reduction of circulating ApoC-III protein levels and resulted in substantial lowering of triglycerides to near-normal levels in diabetic mice versus controls. Antisense treatment did not ameliorate proteinuria or pathologic manifestations of diabetic nephropathy, including podocyte loss. These studies indicate that pathologic manifestations of diabetic nephropathy are unlikely to be reduced by lipid-lowering therapeutics alone, but does not preclude a role for such interventions to be used in conjunction with other therapeutics commonly employed in the treatment of diabetes and its complications.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Hipertrigliceridemia/metabolismo , Animais , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Diabetes Mellitus Experimental/metabolismo , Feminino , Leptina/genética , Masculino , Camundongos , Camundongos Obesos , Oligonucleotídeos Antissenso , Podócitos/metabolismo , Podócitos/patologia
8.
J Clin Invest ; 129(10): 4419-4432, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31343992

RESUMO

Genetic susceptibility to type 2 diabetes is primarily due to ß-cell dysfunction. However, a genetic study to directly interrogate ß-cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues. Insulin secretion from DO islets ranged >1,000-fold even though none of the mice were diabetic. The insulin secretory response to each secretagogue had a unique genetic architecture; some of the loci were specific for one condition, whereas others overlapped. Human loci that are syntenic to many of the insulin secretion QTL from mouse are associated with diabetes-related SNPs in human genome-wide association studies. We report on three genes, Ptpn18, Hunk and Zfp148, where the phenotype predictions from the genetic screen were fulfilled in our studies of transgenic mouse models. These three genes encode a non-receptor type protein tyrosine phosphatase, a serine/threonine protein kinase, and a Krϋppel-type zinc-finger transcription factor, respectively. Our results demonstrate that genetic variation in insulin secretion that can lead to type 2 diabetes is discoverable in non-diabetic individuals.


Assuntos
Proteínas de Ligação a DNA/genética , Loci Gênicos , Secreção de Insulina/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Fatores de Transcrição/genética , Animais , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Transgênicos
9.
PLoS Genet ; 12(12): e1006466, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27935966

RESUMO

Human genome-wide association studies (GWAS) have shown that genetic variation at >130 gene loci is associated with type 2 diabetes (T2D). We asked if the expression of the candidate T2D-associated genes within these loci is regulated by a common locus in pancreatic islets. Using an obese F2 mouse intercross segregating for T2D, we show that the expression of ~40% of the T2D-associated genes is linked to a broad region on mouse chromosome (Chr) 2. As all but 9 of these genes are not physically located on Chr 2, linkage to Chr 2 suggests a genomic factor(s) located on Chr 2 regulates their expression in trans. The transcription factor Nfatc2 is physically located on Chr 2 and its expression demonstrates cis linkage; i.e., its expression maps to itself. When conditioned on the expression of Nfatc2, linkage for the T2D-associated genes was greatly diminished, supporting Nfatc2 as a driver of their expression. Plasma insulin also showed linkage to the same broad region on Chr 2. Overexpression of a constitutively active (ca) form of Nfatc2 induced ß-cell proliferation in mouse and human islets, and transcriptionally regulated more than half of the T2D-associated genes. Overexpression of either ca-Nfatc2 or ca-Nfatc1 in mouse islets enhanced insulin secretion, whereas only ca-Nfatc2 was able to promote ß-cell proliferation, suggesting distinct molecular pathways mediating insulin secretion vs. ß-cell proliferation are regulated by NFAT. Our results suggest that many of the T2D-associated genes are downstream transcriptional targets of NFAT, and may act coordinately in a pathway through which NFAT regulates ß-cell proliferation in both mouse and human islets.


Assuntos
Diabetes Mellitus Tipo 2/genética , Insulina/genética , Fatores de Transcrição NFATC/genética , Animais , Proliferação de Células/genética , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Ligação Genética , Genoma , Estudo de Associação Genômica Ampla , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Obesos , Fatores de Transcrição NFATC/biossíntese , Regiões Promotoras Genéticas
10.
Mol Cell ; 63(3): 433-44, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27477907

RESUMO

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Engenharia de Proteínas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Humanos , Modelos Moleculares , Mutação , Nucleossomos/enzimologia , Nucleossomos/genética , Fosforilação , Regiões Promotoras Genéticas , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Fúngico/efeitos dos fármacos , RNA Fúngico/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
11.
Biotechnol Biofuels ; 6: 108, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23890073

RESUMO

BACKGROUND: Simultaneous saccharification and co-fermentation (SSCF) process involves enzymatic hydrolysis of pretreated lignocellulosic biomass and fermentation of glucose and xylose in one bioreactor. The optimal temperatures for enzymatic hydrolysis are higher than the standard fermentation temperature of ethanologenic Saccharomyces cerevisiae. Moreover, degradation products resulting from biomass pretreatment impair fermentation of sugars, especially xylose, and can synergize with high temperature stress. One approach to resolve both concerns is to utilize a strain background with innate tolerance to both elevated temperatures and degradation products. RESULTS: In this study, we screened a panel of 108 wild and domesticated Saccharomyces cerevisiae strains isolated from a wide range of environmental niches. One wild strain was selected based on its growth tolerance to simultaneous elevated temperature and AFEX™ (Ammonia Fiber Expansion) degradation products. After engineering the strain with two copies of the Scheffersomyces stipitis xylose reductase, xylitol dehydrogenase and xylulokinase genes, we compared the ability of this engineered strain to the benchmark 424A(LNH-ST) strain in ethanol production and xylose fermentation in standard lab medium and AFEX pretreated corn stover (ACS) hydrolysates, as well as in SSCF of ACS at different temperatures. In SSCF of 9% (w/w) glucan loading ACS at 35°C, the engineered strain showed higher cell viabilities and produced a similar amount of ethanol (51.3 g/L) compared to the benchmark 424A(LNH-ST) strain. CONCLUSION: These results validate our approach in the selection of wild Saccharomyces cerevisiae strains with thermo-tolerance and degradation products tolerance properties for lignocellulosic biofuel production. The wild and domesticated yeast strains phenotyped in this work are publically available for others to use as genetic backgrounds for fermentation of their pretreated biomass at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...