Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992466

RESUMO

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Assuntos
Culicidae , Vírus da Febre Amarela , Humanos , Animais , Vírus da Febre Amarela/genética , Estações do Ano , Brasil/epidemiologia , Mosquitos Vetores
2.
Mem Inst Oswaldo Cruz ; 117: e220127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478156

RESUMO

BACKGROUND: In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES: To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS: A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS: When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS: A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.


Assuntos
Vírus da Febre Amarela , Vírus da Febre Amarela/genética , Filogenia , Brasil/epidemiologia
3.
Pathogens ; 11(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297224

RESUMO

The genus Orthopoxvirus (OPXV) of the family Poxviridae comprises several viruses that are capable of infecting a wide range of hosts. One of the most widespread OPXVs is the Vaccinia virus (VACV), which circulates in zoonotic cycles in South America, especially in Brazil, infecting domestic and wild animals and humans and causing economic losses as well as impacting public health. Despite this, little is known about the presence and/or exposure of neotropical primates to orthopoxviruses in the country. In this study, we report the results of a search for evidence of OPVX infections in neotropical free-living primates in the state of Minas Gerais, southeast Brazil. The sera or liver tissues of 63 neotropical primates were examined through plaque reduction neutralization tests (PRNT) and real-time PCR. OPXV-specific neutralizing antibodies were detected in two sera (4.5%) from Callithrix penicillata, showing 55% and 85% reduction in plaque counts, evidencing their previous exposure to the virus. Both individuals were collected in urban areas. All real-time PCR assays were negative. This is the first time that evidence of OPXV exposure has been detected in C. penicillata, a species that usually lives at the interface between cities and forests, increasing risks of zoonotic transmissions through spillover/spillback events. In this way, studies on the circulation of OPXV in neotropical free-living primates are necessary, especially now, with the monkeypox virus being detected in new regions of the planet.

4.
Mem. Inst. Oswaldo Cruz ; 117: e220127, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1405996

RESUMO

BACKGROUND In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.

5.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696408

RESUMO

The 2021 re-emergence of yellow fever in non-human primates in the state of Rio Grande do Sul (RS), southernmost Brazil, resulted in the death of many howler monkeys (genus Alouatta) and led the state to declare a Public Health Emergency of State Importance, despite no human cases reported. In this study, near-complete genomes of yellow fever virus (YFV) recovered from the outbreak were sequenced and examined aiming at a better understanding of the phylogenetic relationships and the spatio-temporal dynamics of the virus distribution. Our results suggest that the most likely sequence of events involved the reintroduction of YFV from the state of São Paulo to RS through the states of Paraná and Santa Catarina, by the end of 2020. These findings reinforce the role of genomic surveillance in determining the pathways of distribution of the virus and in providing references for the implementation of preventive measures for populations in high risk areas.


Assuntos
Febre Amarela/epidemiologia , Febre Amarela/genética , Vírus da Febre Amarela/genética , Alouatta/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Monitoramento Epidemiológico/veterinária , Genômica , Filogenia , Primatas/virologia , Sequenciamento Completo do Genoma/métodos , Febre Amarela/transmissão , Vírus da Febre Amarela/patogenicidade , Zoonoses/virologia
6.
J Med Primatol ; 49(4): 211-217, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175604

RESUMO

BACKGROUND: Wild capuchin monkeys (Sapajus libidinosus) usually are found in conserved forests near the zoo and the urban areas of Brasília city, Brazil. In this study, some capuchin monkeys were captured using traps, followed by safe biological procedures for their overall health analysis, based on specific haematological and biochemical tests of blood samples. METHODS: Blood was collected from a total of 17 monkeys for the determination of parameters, namely packed cell volume (PCV), leucocytes, erythrocytes, platelets and triglycerides. Statistical analyses for average values, median, standard deviation and range were performed. RESULTS: These parameters were set based on the minimum and maximum values obtained from the blood tests. Data are presented in tabulated form. CONCLUSIONS: Capture procedures were based on animal safety analysis for free-living animals and would help future studies on wild animals. The collected samples used in this study suggested the animals to be apparently healthy in their habitat.


Assuntos
Análise Química do Sangue/veterinária , Cebinae/sangue , Testes Hematológicos/veterinária , Animais , Animais Selvagens/sangue , Brasil , Feminino , Masculino
7.
Folia Primatol (Basel) ; 91(2): 149-158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31618728

RESUMO

Leucism is the lack or reduction in pigmentation in the most or parts of the body, but not in the eyes and body extremities. It is extremely rare in primates and has never been reported for Callithrix, a genus endemic to Brazil. We searched for individuals of Callithrix jacchus and C. penicillata with pigmentation anomalies in a systematic survey of three protected areas in the Atlantic Forest, within museum collections in Brazil, and opportunistically during field studies. Since 2008, we have recorded 8 individuals with leucism in small urban and periurban forest patches. Four were from native populations of C. penicillata in Cerrado savannahs and of C. jacchus in the Caatinga xeric scrubland, and 4 were from populations of hybrids between C. jacchus and C. penicillata in invaded areas in the coastal Atlantic Forest. We found no pigmentation abnormalities in museum specimens. We hypothesize that the observed leucism may be linked to inbreeding within the native range, but to hybridization within the invaded range, and discuss the likely ecological consequences to leucistic individuals.


Assuntos
Callithrix/fisiologia , Hibridização Genética , Pigmentação , Animais , Brasil , Callithrix/anatomia & histologia , Callithrix/genética , Feminino , Espécies Introduzidas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...