Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0295740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536857

RESUMO

Microbial inoculants can increase the yield of cultivated crops and are successful in independent trials; however, efficacy drops in large-scale applications due to insufficient consideration of microbial community dynamics. The structure of microbiomes, in addition to the impact of individual taxa, is an important factor to consider when designing growth-promoting inoculants. Here, we investigate the microbial network and community assembly patterns of Macrocystis pyrifera gametophyte germplasm cultures (collectively referred to as a "seedbank") used to cultivate an offshore farm in Santa Barbara, California, and identify network features associated with increased biomass of mature sporophytes. We found that [1] several network features, such as clustering coefficient and edge ratios, significantly vary with biomass outcomes; [2] gametophytes that become low- or high-biomass sporophytes have different hub taxa; and [3] microbial community assembly of gametophyte germplasm cultures is niche-driven. Overall, this study describes microbial community dynamics in M. pyrifera germplasm cultures and ultimately supports the development of early life stage inoculants that can be used on seaweed cultivars to increase biomass yield.


Assuntos
Kelp , Macrocystis , Biomassa , Fazendas , Consórcios Microbianos
2.
J Phycol ; 59(2): 402-417, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36727292

RESUMO

With national interest in seaweed-based biofuels as a sustainable alternative to fossil fuels, there is a need for tools that produce high-yield seaweed cultivars and increase the efficiency of offshore farms. Several agricultural studies have demonstrated that the application of microbial inoculants at an early life stage can improve crop yield, and there is an opportunity to use similar techniques in seaweed aquaculture. However, there is a critical knowledge gap regarding host-microbiome associations of macroalgae gametophytes in germplasm cultures. Here, we investigate the microbial community of Macrocystis pyrifera gametophyte germplasm cultures that were used to cultivate an offshore farm in Santa Barbara, California and identify key taxa correlated with increased biomass of mature sporophytes. This work provides a valuable knowledge base for the development of microbial inoculants that produce high-biomass M. pyrifera cultivars to ultimately be used as biofuel feedstocks.


Assuntos
Macrocystis , Alga Marinha , Células Germinativas Vegetais , Biomassa
3.
Ecol Appl ; 33(3): e2812, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708145

RESUMO

Assessments of the ecological health of algal assemblages in streams typically focus on measures of their local diversity and classify individuals by morphotaxonomy. Such assemblages are often connected through various ecological processes, such as dispersal, and may be more accurately assessed as components of regional-, rather than local-scale assemblages. With recent declines in the costs of sequencing and computation, it has also become increasingly feasible to use metabarcoding to more accurately classify algal species and perform regional-scale bioassessments. Recently, zeta diversity has been explored as a novel method of constructing regional bioassessments for groups of streams. Here, we model the use of zeta diversity to investigate whether stream health can be determined by the landscape diversity of algal assemblages. We also compare the use of DNA metabarcoding and morphotaxonomy classifications in these zeta diversity-based bioassessments of regional stream health. From 96 stream samples in California, we used various orders of zeta diversity to construct models of biotic integrity for multiple assemblages of diatoms, as well as hybrid assemblages of diatoms in combination with soft-bodied algae, using taxonomy data generated with both DNA sequencing as well as traditional morphotaxonomic approaches. We compared our ability to evaluate the ecological health of streams with the performance of multiple algal indices of biological condition. Our zeta diversity-based models of regional biotic integrity were more strongly correlated with existing indices for algal assemblages classified using metabarcoding compared to morphotaxonomy. Metabarcoding for diatoms and hybrid algal assemblages involved rbcL and 18S V9 primers, respectively. Importantly, we also found that these algal assemblages, independent of the classification method, are more likely to be assembled under a process of niche differentiation rather than stochastically. Taken together, these results suggest the potential for zeta diversity patterns of algal assemblages classified using metabarcoding to inform stream bioassessments.


Assuntos
Diatomáceas , Ecossistema , Humanos , Rios , Plantas , Biodiversidade , Monitoramento Ambiental/métodos
4.
Ecol Appl ; 31(6): e02379, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34013632

RESUMO

Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system-level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi-scalar community-level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel-2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life.


Assuntos
DNA Ambiental , Ecossistema , Biodiversidade , California , Código de Barras de DNA Taxonômico , Monitoramento Ambiental
5.
Ecol Evol ; 9(22): 12789-12801, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788214

RESUMO

Ecological monitoring of streams has often focused on assessing the biotic integrity of individual benthic macroinvertebrate (BMI) communities through local measures of diversity, such as taxonomic or functional richness. However, as individual BMI communities are frequently linked by a variety of ecological processes at a regional scale, there is a need to assess biotic integrity of groups of communities at the scale of watersheds. Using 4,619 sampled communities of streambed BMIs, we investigate this question using co-occurrence networks generated from groups of communities selected within California watersheds under different levels of stress due to upstream land use. Building on a number of arguments in theoretical ecology and network theory, we propose a framework for the assessment of the biotic integrity of watershed-scale groupings of BMI communities using measures of their co-occurrence network topology. We found significant correlations between stress, as described by a mean measure of upstream land use within a watershed, and topological measures of co-occurrence networks such as network size (r = -.81, p < 10-4), connectance (r = .31, p < 10-4), mean co-occurrence strength (r = .25, p < 10-4), degree heterogeneity (r = -.10, p < 10-4), and modularity (r = .11, p < 10-4). Using these five topological measures, we constructed a linear model of biotic integrity, here a composite of taxonomic and functional diversity known as the California Stream Condition Index, of groups of BMI communities within a watershed. This model can account for 66% of among-watershed variation in the mean biotic integrity of communities. These observations imply a role for co-occurrence networks in assessing the current status of biotic integrity for BMI communities, as well as their potential use in assessing other ecological communities.

6.
Ecol Appl ; 29(4): e01896, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31051052

RESUMO

Ecological monitoring of streams has frequently focused on measures describing the taxonomic, and sometimes functional, α diversity of benthic macroinvertebrates (BMIs) within a single sampled community. However, as many ecological processes effectively link BMI stream communities there is a need to describe groups of communities using measures of regional diversity. Here we demonstrate a role for incorporating both a traditional pairwise measure of community turnover, ß diversity, in assessing community health as well as ζ diversity, a more generalized framework for describing similarity between multiple communities. Using 4,395 samples of BMI stream communities in California, we constructed a model using measures of α, ß, and ζ diversity, which accounted for 71.7% of among-watershed variation in the mean health of communities, as described by the California Streams Condition Index (CSCI). We also investigated the use of ζ diversity in assessing models of stochastic vs. niche assembly across communities of BMIs within watersheds, with the niche assembly model found to be the likelier of the two.


Assuntos
Invertebrados , Rios , Animais , California , Ecossistema , Monitoramento Ambiental
7.
Microb Biotechnol ; 11(5): 848-858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29749083

RESUMO

The composition of digestive microbiomes is known to be a significant factor in the health of a variety of hosts, including animal livestock. Therefore, it is important to ascertain how readily the microbiome can be significantly altered. To this end, the role of changing diet on the digestive microbiome of the Pacific oyster (Crassostrea gigas) was assessed via weekly faecal sampling. Over the course of 12 weeks, isolated individual oysters were fed either a control diet of Tetraselmis algae (Tet) or a treatment diet which shifted in composition every 4 weeks. Weekly faecal samples from all oysters were taken to characterize their digestive bacterial microbiota. Concurrent weekly sampling of the algal feed cultures was performed to assess the effect of algal microbiomes, independent of the algal type, on the microbiomes observed in the oyster samples. Changing the algal feed was found to be significantly associated with changes in the faecal microbiome over a timescale of weeks between control and treatment groups. No significant differences between individual microbiomes were found within control and treatment groups. This suggests the digestive microbiome of the Pacific oyster can be quickly and reproducibly manipulated.


Assuntos
Crassostrea/microbiologia , Dieta/métodos , Fezes/microbiologia , Microbiota , Ração Animal , Animais , Clorófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...