Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 306: 108-120, 2019 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-31175896

RESUMO

The idea of using extracellular vesicles (EVs) for targeted drug delivery was first introduced in 2011 and has since then gained increasing attention as promising new candidates in the field. Targeting EVs to areas of disease can be achieved through a complex process of designing and inserting a targeting ligand to the surface of the EVs. Although this can be obtained via chemical conjugation, the most important strategy has been to transfect or modulate the EV-producing cell to endow the EVs with the desired targeting capabilities. However, since EVs are harvested from biological sources, their composition is highly heterogeneous, which makes it difficult to control the purity and quality of the resulting EV-based drug delivery vehicles. In this review, we present a detailed account of EVs in targeted drug delivery based on a systematic literature search. We discuss the potential advantages of EVs compared to synthetic lipid-based nanocarriers, and the methodological and biological limitations associated with their use as targeted drug delivery vehicles.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Animais , Humanos , Lipossomos , Distribuição Tecidual
2.
Biochim Biophys Acta Rev Cancer ; 1871(1): 109-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528756

RESUMO

Circulating biomarkers have a great potential in diagnosing cancer diseases at early stages, where curative treatment is a realistic possibility. In the recent years, using extracellular vesicles (EVs) derived from blood as biomarkers has gained widespread popularity, mainly because they are thought to be easy to isolate and carry a vast variety of biological cargos that can be analyzed for biomarker purposes. However, our current knowledge on the plasma EV concentration in normophysiological states is sparse. Here, we provide the very first mean estimate of the plasma EV concentration based on values obtained from a thorough literature review. The different estimates obtained from the literature are correlated to the isolation techniques used to obtain them, illustrating how some methodologies may over- or underestimate the plasma EV concentration. We also show that the estimated plasma EV concentration (approximately 1010 EVs per mL) defines EVs as a minority population compared to other colloidal particles of the systemic circulation, namely the lipoproteins, which are known contaminants in EV isolates and carry biomarker molecules themselves. Lastly, we introduce the possibility of regarding EVs and lipoproteins as a continuum of lipid-containing particles to which biomarker molecules can be associated. Using such a holistic approach, increased strength of plasma-derived cancer biomarkers may soon be revealed.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Neoplasias/sangue , Humanos
3.
Nanoscale ; 10(48): 22720-22724, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30488936

RESUMO

Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.


Assuntos
Corantes Fluorescentes/química , Lipídeos/química , Coloração e Rotulagem/métodos , Lipossomos , Nanomedicina/métodos
4.
J Control Release ; 269: 10-14, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29126999

RESUMO

The field of extracellular vesicle (EV)-based drug delivery systems has evolved significantly through the recent years, and numerous studies suggest that these endogenous nanoparticles can function as efficient drug delivery vehicles in a variety of diseases. Many characteristics of these EV-based drug delivery vehicles suggest them to be superior at residing in the systemic circulation and possibly at mediating therapeutic effects compared to synthetic drug delivery vehicles, e.g. liposomes. In this Commentary, we discuss how some currently published head-to-head comparisons of EVs versus liposomes are weakened by the inadequate choice of liposomal formulation, and encourage researchers to implement better controls to show any potential superiority of EVs over other synthetic nanoparticles.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Lipossomos , Grupos Controle
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 371-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531471

RESUMO

Monomeric bacteriorhodopsin (bR) reconstituted into POPC/POPG-containing nanodiscs was investigated by combined small-angle neutron and X-ray scattering. A novel hybrid approach to small-angle scattering data analysis was developed. In combination, these provided direct structural insight into membrane-protein localization in the nanodisc and into the protein-lipid interactions. It was found that bR is laterally decentred in the plane of the disc and is slightly tilted in the phospholipid bilayer. The thickness of the bilayer is reduced in response to the incorporation of bR. The observed tilt of bR is in good accordance with previously performed theoretical predictions and computer simulations based on the bR crystal structure. The result is a significant and essential step on the way to developing a general small-angle scattering-based method for determining the low-resolution structures of membrane proteins in physiologically relevant environments.


Assuntos
Proteínas Arqueais/química , Bacteriorodopsinas/química , Halobacterium/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Proteínas Arqueais/biossíntese , Proteínas Arqueais/isolamento & purificação , Bacteriorodopsinas/biossíntese , Bacteriorodopsinas/isolamento & purificação , Halobacterium/metabolismo , Bicamadas Lipídicas/química , Membranas Artificiais , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 901-13, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633601

RESUMO

Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined. Different variants of the enzymes were isolated by hydrophobic interaction chromatography and showed variations in their glycosylation, N-terminal sequences and activities. Glycosylation at Asn291 and the loss of the first three residues of camel chymosin significantly decreased its activity. Thermal differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Šand the crystal structure of unglycosylated bovine chymosin was redetermined at a slightly higher resolution (1.8 Å) than previously determined structures. Camel and bovine chymosin share the same overall fold, except for the antiparallel central ß-sheet that connects the N-terminal and C-terminal domains. In bovine chymosin the N-terminus forms one of the strands which is lacking in camel chymosin. This difference leads to an increase in the flexibility of the relative orientation of the two domains in the camel enzyme. Variations in the amino acids delineating the substrate-binding cleft suggest a greater flexibility in the ability to accommodate the substrate in camel chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk.


Assuntos
Quimosina/química , Quimosina/metabolismo , Animais , Camelus , Caseínas/metabolismo , Bovinos , Queijo , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade
7.
J Am Chem Soc ; 132(39): 13713-22, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20828154

RESUMO

Phospholipid bilayers host and support the function of membrane proteins and may be stabilized in disc-like nanostructures, allowing for unprecedented solution studies of the assembly, structure, and function of membrane proteins (Bayburt et al. Nano Lett. 2002, 2, 853-856). Based on small-angle neutron scattering in combination with variable-temperature studies of synchrotron small-angle X-ray scattering on nanodiscs in solution, we show that the fundamental nanodisc unit, consisting of a lipid bilayer surrounded by amphiphilic scaffold proteins, possesses intrinsically an elliptical shape. The temperature dependence of the curvature of the nanodiscs prepared with two different phospholipid types (DLPC and POPC) shows that it is the scaffold protein that determines the overall elliptical shape and that the nanodiscs become more circular with increasing temperature. Our data also show that the hydrophobic bilayer thickness is, to a large extent, dictated by the scaffolding protein and adjusted to minimize the hydrophobic mismatch between protein and phospholipid. Our conclusions result from a new comprehensive and molecular-based model of the nanodisc structure and the use of this to analyze the experimental scattering profile from nanodiscs. The model paves the way for future detailed structural studies of functional membrane proteins encapsulated in nanodiscs.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química , Fosfolipídeos/química , Modelos Moleculares , Modelos Teóricos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...