Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1177: 338790, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34482898

RESUMO

For the first time, Diffusive Gradient in Thin-films (DGT) focuses on the inorganic iodine species iodate (IO3-) and iodide (I-). A silver-doped Cl resin (AgdCl), which is known to selectively accumulate I-, was used to make a binding gel. Laboratory investigations were designed to verify the suitability of the AgdCl-DGT method to measure the total I- concentration in environmental waters. Total recovery of I- was obtained using an elution solution containing 100 mmol L-1 KCN. DGT validation experiments in 10 mmol L-1 NaCl showed linear accumulation of I- over time, contrary to IO3-, thus confirming the selectivity of AgdCl-binding gel. The AgdCl-DGT measurement of total I- concentration was independent of pH (4.5-8.8) and was not impacted by the presence of bicarbonate (1-5 mmol L-1). Finally, the performance of AgdCl-DGT samplers were tested in two continental waters and a synthetic seawater. The AgdCl-DGT samplers measured 27-33% of the total I- concentration in the two continental waters up to 24 h of deployment time, whereas the AgdCl-DGT response retrieved the total I- concentration in seawater up to 72 h (106 ± 7%). The difference in DGT response was attributed to the low ionic strength of the two continental waters, limiting the application of AgdCl-DGT method to media with higher ionic strength.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Difusão , Iodetos , Água do Mar , Poluentes Químicos da Água/análise
2.
J Environ Sci (China) ; 93: 185-192, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446454

RESUMO

Natural organic matter (NOM) is known to play an important role in the transport and binding of trace metal elements in aquatic and soil systems. Thallium is a pollutant for which the extent of the role played by NOM is poorly known. Consequently, this study investigates thallium(I) and its complexation to a purified humic substance as proxy for NOM. Experiments were performed with the Donnan Membrane Technique to separate, for the first time, the free Tl+ ion from its complexed form in the bulk solution. Various pH and concentrations were investigated at constant ionic strength and constant NOM proxy concentrations in solution. Experimental results were described with NICA-Donnan model. Thallium complexation was compared to silver complexation using literature data and using the same NICA-Donnan formalism. Parameters for these two cations (Tl+ and Ag+) are reported in this article, for the first time. Results display low thallium complexation to the NOM proxy while silver competes with divalent cations for the NOM binding sites. Calculated speciation for dissolved thallium highlights the dominance of free thallium (Tl+) in solution whereas Tl-NOM complexes contribute roughly 15% to total Tl(I) species in river and lake type waters. Similar results are obtained for soil solutions, Tl-bound to NOM < 30% of total, from UK soils with different land use and geochemistry.


Assuntos
Poluentes do Solo/análise , Tálio , Água Doce , Substâncias Húmicas , Prata , Solo
3.
FEMS Microbiol Lett ; 366(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504457

RESUMO

Chernobyl and Fukushima were subjected to radionuclide (RN) contamination that has led to environmental problems. In order to explore the ability of microorganisms to survive in these environments, we used a combined 16S rRNA and metagenomic approach to describe the prokaryotic community structure and metabolic potential over a gradient of RN concentrations (137Cs 1680-0.4 and 90Sr 209.1-1.9 kBq kg-1) in soil samples. The taxonomic results showed that samples with low 137Cs content (37.8-0.4 kBq kg-1) from Fukushima and Chernobyl clustered together. In order to determine the effect of soil chemical parameters such as organic carbon (OC), Cesium-137 (137Cs) and Strontium-90 (90Sr) on the functional potential of microbial communities, multiple predictor model analysis using piecewiseSEM was carried out on Chernobyl soil metagenomes. The model identified 46 genes that were correlated to these parameters of which most have previously been described as mechanisms used by microorganisms under stress conditions. This study provides a baseline taxonomic and metagenomic dataset for Fukushima and Chernobyl, respectively, including physical and chemical characteristics. Our results pave the way for evaluating the possible RN selective pressure that might contribute to shaping microbial community structure and their functions in contaminated soils.


Assuntos
Biota , Radioisótopos de Césio/análise , Microbiologia do Solo , Poluentes Radioativos do Solo/análise , Solo/química , Radioisótopos de Estrôncio/análise , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Japão , Redes e Vias Metabólicas/genética , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ucrânia
4.
J Environ Radioact ; 208-209: 106025, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31419762

RESUMO

Long-term environmental behaviour of radioactive particles released during the Chernobyl accident and deposited in sandy topsoil in Ivankiv district of Kyiv Region (Ukraine), in radioactive trench waste materials from the Red forest, and in bottom sediments from the Cooling pond has been assessed. The efficiency of the models describing the dissolution/weathering rates of U fuel particles developed 15-20 years ago was tested, and their predictions for the dynamics of remobilization, mobility and plants uptake of 90Sr were confirmed. It was found that at present in the topsoil and in radioactive trench waste material, total dissolution of fuel particles of low chemical stability (UO2+x) has occurred and about half of the non-oxidized chemically stable fuel particles (UO2) has also dissolved, indicating radiological stabilization of the environment and that the mobile fraction of radionuclides would be reduced in the future. The biological availability of 90Sr in topsoil due to fuel particles dissolution has reached maximum values and further decrease is expected. The presence of chemically extra-stable fuel particles (U-Zry-Ox) in environments should be taken into account when the total radionuclides activity concentrations are assessed during radioactive materials management. It was shown that nearly half of the 90Sr activity remained as part of the non-dissolved UO2 fuel particles at the time of the study. Taking into consideration that 31 ±â€¯4% of the radionuclide activities were still associated with non-dissolved chemically extra-stable particles (U-Zry-Ox) in radioactive trench waste materials from the Red forest, increased dissolution should not be expected in the near future. The physico-chemical form of radionuclides in air exposed sediments from the Cooling pond were determined, and results showed that about 70-80% of total 90Sr, 241Am and plutonium isotopes activity were associated with U fuel particles. The low dissolution rate of radionuclides from the pond sediments is attributed to prolonged slightly alkaline pH in the medium due to zebra mussel residues. According to new data, the emission value of 238Pu associated with fuel particles released during the Chernobyl accident amounted to 1.8 × 1013Bq (1.2% of the activity in the reactor) and 90Sr amounted to 2.6 × 1015Bq (1.5% of the activity in the reactor).


Assuntos
Acidente Nuclear de Chernobyl , Monitoramento de Radiação , Cinza Radioativa/análise , Poluentes Radioativos do Solo/análise
5.
Environ Sci Pollut Res Int ; 26(2): 1994-2006, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30465239

RESUMO

This study deals with further and systematic laboratory evaluation of the already known ammonium 12-molybdophosphate (AMP)-diffusive gradient in thin film (DGT) method, which is used for measuring total Cs concentration in environmental waters. This study confirms that the AMP-binding gel is not stable for pH > 6. In order to reveal a potential impact of AMP degradation on DGT application, time-series experiments were performed by deploying AMP-DGT samplers in Cs-doped moderately basic soft and hard water up to total AMP-binding gel degradation (60 and 175 h of deployment time, respectively). Linear accumulation of Cs by AMP-DGT samplers was observed up to 48 and 58 h in hard and soft waters, respectively. For this deployment time range, AMP-DGT measured over 77 ± 10 and 94 ± 16% of total Cs concentration in hard and soft water, respectively. The difference in DGT response was attributed to Ca2+ and Mg2+ competition reducing the uptake of AMP-DGT samplers in hard water. Shrinkage of agarose-polyacrylamide diffusive gel was experimentally observed only in hard water due to more intensive AMP-binding gel degradation in hard water. Even if the AMP-DGT response was not impacted in this study, it is recommended to use agarose hydrogel as standard diffusive gel. Based on the experience obtained from this detailed validation process, the authors propose a number of key requirements that need to be considered when developing DGT devices, with testing the performance over longer deployment times being critical. Graphical abstract ᅟ.


Assuntos
Compostos de Amônio/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Difusão
6.
Sci Rep ; 6: 37618, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876870

RESUMO

Our study focused on radiocaesium (137Cs) partitioning in forests, three vegetation periods after the Fukushima Daiichi nuclear power plant accident. 137Cs distribution in forest components (organic and mineral soil layers as well as tree compartments: stem, bark, needles, branches and roots) was measured for two Japanese cedar stand ages (17 and 33 years old). The results showed that around 85% of the initial deposit was found in the forest floor and topsoil. For the youngest stand almost 70% of the deposit is present in the forest floor, whereas for the oldest stand 50% is present in the 0-3 cm mineral soil layer. For trees, old and perennial organs (including dead and living needles and branches, litter fall and outer bark) directly exposed to the fallout remained the most contaminated. The crown concentrated 61-69% of the total tree contamination. Surprisingly the dead organs concentrated 25 ± 9% (young cedars) to 36 ± 20% (mature cedar) of the trees' residual activity, highlighting the importance of that specific compartment in the early post-accident phase for Japanese cedar forests. Although the stem (including bark) represents the highest biomass pool, it only concentrates 3.3% and 4.6% of the initial 137Cs deposit for mature and young cedars, respectively.


Assuntos
Radioisótopos de Césio/análise , Cryptomeria/química , Florestas , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Biomassa , Ecossistema , Solo/química , Propriedades de Superfície
7.
J Environ Radioact ; 138: 19-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25128774

RESUMO

After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized.


Assuntos
Acidente Nuclear de Chernobyl , Cloro/análise , Água Subterrânea/análise , Monitoramento de Radiação , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Ucrânia , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...