Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202300684, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742480

RESUMO

Disulfide bond protein A (DsbA) is an oxidoreductase enzyme that catalyzes the formation of disulfide bonds in Gram-negative bacteria. In Escherichia coli, DsbA (EcDsbA) is essential for bacterial virulence, thus inhibitors have the potential to act as antivirulence agents. A fragment-based screen was conducted against EcDsbA and herein we describe the development of a series of compounds based on a phenylthiophene hit identified from the screen. A novel thiol reactive and "clickable" ethynylfluoromethylketone was designed for reaction with azide-functionalized fragments to enable rapid and versatile attachment to a range of fragments. The resulting fluoromethylketone conjugates showed selectivity for reaction with the active site thiol of EcDsbA, however unexpectedly, turnover of the covalent adduct was observed. A mechanism for this turnover was investigated and proposed which may have wider ramifications for covalent reactions with dithiol-disulfide oxidoreducatases.

2.
Mol Pharm ; 20(5): 2675-2685, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996486

RESUMO

Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.


Assuntos
Pró-Fármacos , Ratos , Camundongos , Animais , Pró-Fármacos/química , Triglicerídeos , Ácido Micofenólico/metabolismo , Linfonodos/metabolismo , Intestinos , Glicerídeos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos , Administração Oral
4.
PLoS One ; 17(7): e0271735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35900970

RESUMO

Stinging nettle root and leaf extracts were tested for their effect on prostatic smooth muscle contractility. Root extract did not affect electrical field stimulation induced-nerve mediated contractions of isolated rat prostates. On the other hand, leaf extract attenuated electrical field stimulation-induced contractions at all frequencies. Similarly, contractions elicited by exogenous administration of ATP and αß-methylene ATP were inhibited by leaf extract, whereas contractions elicited by exogenous administration of noradrenaline or acetylcholine were unaffected. The active component was present within the aqueous phase of the leaf extract. In mouse mating studies, stinging nettle leaf extract (50 mg p.o. daily) reduced male fertility by 53% compared to vehicle-treated male mice. Cardiovascular parameters were unaffected by administration of stinging nettle leaf extract (p ≥ 0.057). Treated mice exhibited normal mating behaviour. Bladder and testes weighed less in stinging nettle leaf extract treated mice. All other organs and total body weight were unaffected. It is concluded that stinging nettle leaf extract reduces contractility of genitourinary smooth muscle by acting as an antagonist at postjunctional P2X1-purinoceptors. These data indicates that blocking sperm transport through pharmacological blockade of P2X1-purinoceptors via oral administration is consistent with an effective and convenient biological strategy male contraception.


Assuntos
Urtica dioica , Trifosfato de Adenosina , Animais , Fertilidade , Masculino , Camundongos , Extratos Vegetais/farmacologia , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos , Receptores Purinérgicos P2 , Sementes
5.
Front Pharmacol ; 13: 879660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496278

RESUMO

Buprenorphine (BUP) is a potent opioid analgesic that is widely used for severe pain management and opioid replacement therapy. The oral bioavailability of BUP, however, is significantly limited by first-pass metabolism. Previous studies have shown that triglyceride (TG) mimetic prodrugs of the steroid hormone testosterone circumvent first-pass metabolism by directing drug transport through the intestinal lymphatics, bypassing the liver. The current study expanded this prodrug strategy to BUP. Here different self-immolative (SI) linkers were evaluated to conjugate BUP to the 2 position of the TG backbone via the phenol group on BUP. The SI linkers were designed to promote drug release in plasma. Lipolysis of the prodrug in the intestinal tract was examined via incubation with simulated intestinal fluid (SIF), and potential for parent drug liberation in the systemic circulation was evaluated via incubation in rat plasma. Lymphatic transport and bioavailability studies were subsequently conducted in mesenteric lymph duct or carotid artery-cannulated rats, respectively. TG prodrug derivatives were efficiently transported into the lymphatics (up to 45% of the dose in anaesthetised rats, vs. less than 0.1% for BUP). Incorporation of the SI linkers facilitated BUP release from the prodrugs in the plasma and in concert with high lymphatic transport led to a marked enhancement in oral bioavailability (up to 22-fold) compared to BUP alone. These data suggest the potential to develop an orally bioavailable BUP product which may have advantages with respect to patient preference when compared to current sublingual, transdermal patch or parenteral formulations.

6.
Nat Metab ; 3(9): 1175-1188, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34545251

RESUMO

Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.


Assuntos
Resistência à Insulina , Vasos Linfáticos/fisiopatologia , Mesentério/fisiopatologia , Obesidade Abdominal/fisiopatologia , Adulto , Idoso , Animais , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade Abdominal/terapia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo
7.
J Control Release ; 332: 636-651, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33609620

RESUMO

The mesenteric lymph nodes (MLN) are a key site for the generation of adaptive immune responses to gut-derived antigenic material and immune cells within the MLN contribute to the pathophysiology of a range of conditions including inflammatory and autoimmune diseases, viral infections, graft versus host disease and cancer. Targeting immunomodulating drugs to the MLN may thus be beneficial in a range of conditions. This paper investigates the potential benefit of targeting a model immunosuppressant drug, mycophenolic acid (MPA), to T cells in the MLN, using a triglyceride (TG) mimetic prodrug approach. We confirmed that administration of MPA in the TG prodrug form (MPA-TG), increased lymphatic transport of MPA-related species 83-fold and increased MLN concentrations of MPA >20 fold, when compared to MPA alone, for up to 4 h in mice. At the same time, the plasma exposure of MPA and MPA-TG was similar, limiting the opportunity for systemic side effects. Confocal microscopy and flow cytometry studies with a fluorescent model prodrug (Bodipy-TG) revealed that the prodrug accumulated in the MLN cortex and paracortex at 5 and 10 h following administration and was highly associated with B cells and T cells that are found in these regions of the MLN. Finally, we demonstrated that MPA-TG was significantly more effective than MPA at inhibiting CD4+ and CD8+ T cell proliferation in the MLN of mice in response to an oral ovalbumin antigen challenge. In contrast, MPA-TG was no more effective than MPA at inhibiting T cell proliferation in peripheral LN when mice were challenged via SC administration of ovalbumin. This paper provides the first evidence of an in vivo pharmacodynamic benefit of targeting the MLN using a TG mimetic prodrug approach. The TG mimetic prodrug technology has the potential to benefit the treatment of a range of conditions where aberrant immune responses are initiated in gut-associated lymphoid tissues.


Assuntos
Pró-Fármacos , Animais , Imunidade , Imunomodulação , Linfonodos , Mesentério , Camundongos , Ácido Micofenólico , Triglicerídeos
8.
J Pharm Sci ; 110(1): 489-499, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069711

RESUMO

Drug delivery to the lymphatic system is gaining increasing attention, particularly in fields such as immunotherapy where drug access to lymphocytes is central to activity. We have previously described a prodrug strategy that facilitates the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA) via incorporation into intestinal triglyceride transport pathways. The current study explored a series of structurally related glyceride and phospholipid mimetic prodrugs of MPA in an attempt to enhance lymph targeting and to better elucidate the design criteria for lipid mimetic prodrugs. MPA was conjugated to a glyceride or phospholipid backbone at various positions using different spacers employing ester, ether, carbonate and amide bonds. Patterns of prodrug hydrolysis were evaluated in rat digestive fluid, and lymphatic transport and plasma pharmacokinetics were assessed in lymph duct cannulated rats. Prodrugs with different spacers between MPA and the glyceride backbone resulted in up to 70-fold differences in gastrointestinal stability. MPA conjugation at the 2 position of the glyceride backbone and via an ester bond were most effective in promoting lymphatic transport. Phospholipid prodrug derivatives, or glyceride derivatives with MPA attached at the 1 position or when linked via ether, carbonate or amide bonds were poorly incorporated into lymphatic transport pathways.


Assuntos
Pró-Fármacos , Animais , Sistemas de Liberação de Medicamentos , Glicerídeos , Linfa , Fosfolipídeos , Ratos
9.
Sci Transl Med ; 9(392)2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566424

RESUMO

Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and ß-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.


Assuntos
Endossomos/metabolismo , Terapia de Alvo Molecular , Nociceptividade , Dor/tratamento farmacológico , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Animais , Compartimento Celular , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Modelos Biológicos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Nociceptividade/efeitos dos fármacos , Dor/patologia , Ligação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/patologia , Frações Subcelulares/metabolismo , Substância P/metabolismo , beta-Arrestinas/metabolismo
10.
PLoS One ; 12(3): e0173436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346540

RESUMO

At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Virulência/metabolismo
11.
J Biomol NMR ; 66(3): 195-208, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27778134

RESUMO

We describe a general approach to determine the binding pose of small molecules in weakly bound protein-ligand complexes by deriving distance constraints between the ligand and methyl groups from all methyl-containing residues of the protein. We demonstrate that using a single sample, which can be prepared without the use of expensive precursors, it is possible to generate high-resolution data rapidly and obtain the resonance assignments of Ile, Leu, Val, Ala and Thr methyl groups using triple resonance scalar correlation data. The same sample may be used to obtain Met εCH3 assignments using NOESY-based methods, although the superior sensitivity of NOESY using [U-13C,15N]-labeled protein makes the use of this second sample more efficient. We describe a structural model for a weakly binding ligand bound to its target protein, DsbA, derived from intermolecular methyl-to-ligand nuclear Overhauser enhancements, and demonstrate that the ability to assign all methyl resonances in the spectrum is essential to derive an accurate model of the structure. Once the methyl assignments have been obtained, this approach provides a rapid means to generate structural models for weakly bound protein-ligand complexes. Such weak complexes are often found at the beginning of programs of fragment based drug design and can be challenging to characterize using X-ray crystallography.


Assuntos
Ligantes , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sítios de Ligação , Marcação por Isótopo , Espectroscopia de Ressonância Magnética/métodos , Metais/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Prótons , Solubilidade
12.
Mol Pharm ; 13(10): 3351-3361, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27608166

RESUMO

In previous studies, a triglyceride (TG) mimetic prodrug of the model immunomodulator mycophenolic acid (MPA) was shown to significantly enhance lymphatic transport of MPA-related species in the rat. The rat gastrointestinal tract, however, is somewhat different from that in higher order species such as dogs and humans and may underestimate lymphatic transport. Here the effectiveness of the prodrug strategy has been examined in conscious greyhound dogs, the GI physiology of which is more representative of that in humans. The bioavailability and lymphatic transport of free MPA and total MPA related materials were examined following oral administration of the parent drug (MPA) and the prodrug (2-MPA-TG) to both thoracic lymph duct cannulated and intact (noncannulated) greyhound dogs. The enrichment of free MPA in lymph nodes and lymph-derived lymphocytes was also determined to examine the efficiency of drug targeting to potential sites of action within the lymph. Via biochemical integration into a series of site-specific metabolic processes, the prodrug markedly increased (288-fold) lymphatic transport of total MPA related material (present as re-esterified 2-MPA-TG) when compared to the parent MPA and the extent of lymphatic transport was significantly greater in the dog (36.4% of the dose recovered in lymph) when compared to the previous data in the rat (13.4% of the dose). Conversion from 2-MPA-TG derivatives to parent MPA occurred in vivo, resulting in a marked increase in MPA concentrations in lymph nodes (5-6-fold) and lymph lymphocytes (21-fold), when compared to animals administered the parent drug. In conclusion, the data demonstrate that the TG prodrug of MPA facilitates efficient delivery of MPA to the lymphatic system in dogs and suggest that the TG prodrug strategy may more effectively facilitate targeted delivery in large animals than in rats.


Assuntos
Linfócitos/metabolismo , Ácido Micofenólico/metabolismo , Pró-Fármacos/metabolismo , Triglicerídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cães , Humanos , Linfonodos/metabolismo , Masculino , Espectrometria de Massas em Tandem
13.
Angew Chem Int Ed Engl ; 55(44): 13700-13705, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27482655

RESUMO

First-pass hepatic metabolism can significantly limit oral drug bioavailability. Drug transport from the intestine through the lymphatic system, rather than the portal vein, circumvents first-pass metabolism. However, the majority of drugs do not have the requisite physicochemical properties to facilitate lymphatic access. Herein, we describe a prodrug strategy that promotes selective transport through the intestinal lymph vessels and subsequent release of drug in the systemic circulation, thereby enhancing oral bioavailability. Using testosterone (TST) as a model high first-pass drug, glyceride-mimetic prodrugs incorporating self-immolative (SI) spacers, resulted in remarkable increases (up to 90-fold) in TST plasma exposure when compared to the current commercial product testosterone undecanoate (TU). This approach opens new opportunities for the effective development of drugs where oral delivery is limited by first-pass metabolism and provides a new avenue to enhance drug targeting to intestinal lymphoid tissue.


Assuntos
Glicerídeos/química , Sistema Linfático/metabolismo , Pró-Fármacos/química , Administração Oral , Animais , Disponibilidade Biológica , Glicerídeos/administração & dosagem , Glicerídeos/metabolismo , Humanos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo
14.
J Mol Biol ; 428(20): 3986-3998, 2016 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422009

RESUMO

The interaction between apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) plays a key role in the invasion of red blood cells by Plasmodium parasites. Disruption of this critical protein-protein interaction represents a promising avenue for antimalarial drug discovery. In this work, we exploited a 13-residue ß-hairpin based on the C-terminal loop of RON2 to probe a conserved binding site on Plasmodium falciparum AMA1. A series of mutations was synthetically engineered into ß-hairpin peptides to establish structure-activity relationships. The best mutations improved the binding affinity of the ß-hairpin peptide by ~7-fold for 3D7 AMA1 and ~14-fold for FVO AMA1. We determined the crystal structures of several ß-hairpin peptides in complex with AMA1 in order to define the structural features and specific interactions that contribute to improved binding affinity. The same mutations in the longer RON2sp2 peptide (residues 2027-2055 of RON2) increased the binding affinity by >30-fold for 3D7 and FVO AMA1, producing KD values of 2.1nM and 0.4nM, respectively. To our knowledge, this is the most potent strain-transcending peptide reported to date and represents a valuable tool to characterize the AMA1-RON2 interaction.


Assuntos
Antígenos de Protozoários/metabolismo , Antimaláricos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Proteínas de Protozoários/genética , Relação Estrutura-Atividade
15.
J Pharm Sci ; 105(2): 786-796, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26540595

RESUMO

The triglyceride (TG) mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) biochemically integrates into intestinal lipid transport and lipoprotein assembly pathways and thereby promotes the delivery of mycophenolic acid (MPA) into the lymphatic system. As lipoprotein (LP) formation occurs constitutively, even in the fasted state, the current study aimed to determine whether lymphatic transport of 2-MPA-TG was dependent on coadministered exogenous lipid. In vitro incubation of the prodrug with rat digestive fluid and in situ intestinal perfusion experiments revealed that hydrolysis and absorption of the prodrug were relatively unaffected by the quantity of lipid in formulations. In vivo studies in rats, however, showed that the lymphatic transport of TG and 2-MPA-TG was significantly higher following administration with higher quantities of lipid and that oleic acid (C18:1) was more effective in promoting prodrug transport than lipids with higher degrees of unsaturation. The recovery of 2-MPA-TG and TG in lymph correlated strongly (R(2) = 0.99) and more than 97% of the prodrug was associated with chylomicrons. Inhibition of LP assembly by Pluronic L81 simultaneously inhibited the lymphatic transport of 2-MPA-TG and TG. In conclusion, although the TG mimetic prodrug effectively incorporates into TG resynthetic pathways, lipid coadministration is still required to support efficient lymphatic transport.


Assuntos
Materiais Biomiméticos/metabolismo , Linfa/metabolismo , Pró-Fármacos/metabolismo , Triglicerídeos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Materiais Biomiméticos/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Linfa/efeitos dos fármacos , Masculino , Pró-Fármacos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Circulação Esplâncnica/efeitos dos fármacos , Circulação Esplâncnica/fisiologia , Triglicerídeos/administração & dosagem
16.
Proc Natl Acad Sci U S A ; 112(22): 6979-84, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038551

RESUMO

Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment.


Assuntos
Descoberta de Drogas/métodos , HIV-1/enzimologia , Pró-Fármacos/isolamento & purificação , Inibidores da Transcriptase Reversa/isolamento & purificação , Inibidores da Transcriptase Reversa/farmacologia , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Espectroscopia de Ressonância Magnética , Pró-Fármacos/análise , Inibidores da Transcriptase Reversa/análise , Ribonuclease H/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Replicação Viral/efeitos dos fármacos
17.
ChemistryOpen ; 4(1): 56-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25861571

RESUMO

p38α mitogen-activated protein kinase (MAPK) plays a role in several cellular processes and consequently has been a therapeutic target in inflammatory diseases, cancer, and cardiovascular disease. A number of known p38α MAPK inhibitors contain vicinal 4-fluorophenyl/4-pyridyl rings connected to either a 5- or 6-membered heterocycle. In this study, a small library of substituted thiophene-based compounds bearing the vicinal 4-fluorophenyl/4-pyridyl rings was designed using computational docking as a visualisation tool. Compounds were synthesised and evaluated in a fluorescence polarisation binding assay. The synthesised analogues had a higher binding affinity to the active phosphorylated form of p38α MAPK than the inactive nonphosphorylated form of the protein. 4-(2-(4-fluorophenyl)thiophen-3-yl)pyridine had a K i value of 0.6 µm to active p38α MAPK highlighting that substitution of the core ring to a thiophene retains affinity to the enzyme and can be utilised in p38α MAPK inhibitors. This compound was further elaborated using a substituted phenyl ring in order to probe the second hydrophobic pocket. Many of these analogues exhibited low micromolar affinity to active p38α MAPK. The suppression of neonatal rat fibroblast collagen synthesis was also observed suggesting that further development of these compounds may lead to potential therapeutics having cardioprotective properties.

18.
J Med Chem ; 58(3): 1205-14, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25559643

RESUMO

We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.


Assuntos
Tiazóis/química , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ressonância de Plasmônio de Superfície
19.
Angew Chem Int Ed Engl ; 54(7): 2179-84, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25556635

RESUMO

The thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent. Thus DsbA is a critical mediator of virulence and inhibitors may act as antivirulence agents. Biophysical screening has been employed to identify fragments that bind to DsbA from Escherichia coli. Elaboration of one of these fragments produced compounds that inhibit DsbA activity in vitro. In cell-based assays, the compounds inhibit bacterial motility, but have no effect on growth in liquid culture, which is consistent with selective inhibition of DsbA. Crystal structures of inhibitors bound to DsbA indicate that they bind adjacent to the active site. Together, the data suggest that DsbA may be amenable to the development of novel antibacterial compounds that act by inhibiting bacterial virulence.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Simulação de Acoplamento Molecular , Isomerases de Dissulfetos de Proteínas/metabolismo
20.
Pharm Res ; 32(5): 1830-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25446770

RESUMO

PURPOSE: Recent studies have demonstrated the potential for a triglyceride (TG) mimetic prodrug to promote the delivery of mycophenolic acid (MPA) to the lymphatic system. Here, the metabolic pathways that facilitate the lymphatic transport of the TG prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) were examined to better inform the design of next generation prodrugs. METHODS: In vitro hydrolysis experiments in simulated intestinal conditions and in vivo rat lymphatic transport experiments were conducted in the presence and absence of orlistat and A922500 (inhibitors of lipolysis and TG re-esterification, respectively), to evaluate the importance of 2-MPA-TG digestion and re-esterification of 2-MPA-MG (the 2-monoglyceride derivative) in promoting lymphatic transport. RESULTS: 2-MPA-TG was rapidly hydrolysed to 2-MPA-MG on incubation with fresh bile and pancreatic fluid (BPF), but not in simulated gastric fluid, heat-inactivated BPF or BPF + orlistat. Orlistat markedly decreased lymphatic transport and systemic exposure of 2-MPA-TG derivatives suggesting that inhibition of pancreatic lipase hindered luminal digestion and absorption of the prodrug. A922500 also significantly decreased lymphatic transport of 2-MPA-TG but redirected MPA to the portal blood, suggesting that hindered re-acylation of 2-MPA-MG resulted in intracellular degradation. CONCLUSION: Incorporation into TG deacylation-reacylation pathways is a critical determinant of the utility of lymph directed TG-mimetic prodrugs.


Assuntos
Linfa/metabolismo , Ácido Micofenólico/análogos & derivados , Pró-Fármacos/farmacocinética , Triglicerídeos/farmacocinética , Acilação , Animais , Bile/metabolismo , Digestão , Hidrólise , Masculino , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacocinética , Pró-Fármacos/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...