Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639740

RESUMO

Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Further, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in cancer patients leads to long-term morbidity and poor quality of life in this patient population-even when patients are cancer-free. Evidence from cancer patients and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiologic and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called 'reverse cardio-oncology', where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart, and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.

2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645227

RESUMO

Objectives: A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods: Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ~45, ~75 and ~90 days after EOC injection. Results: Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion: This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia.

3.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382296

RESUMO

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Assuntos
Células Endoteliais , Eritropoetina , Animais , Camundongos , Hiperplasia , Hibridização in Situ Fluorescente , Miócitos Cardíacos , RNA , RNA Mensageiro/genética
4.
J Appl Physiol (1985) ; 136(5): 1245-1259, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385183

RESUMO

Anemia and renal failure are independent risk factors for perioperative stroke, prompting us to assess the combined impact of acute hemodilutional anemia and bilateral nephrectomy (2Nx) on microvascular brain Po2 (PBro2) in a rat model. Changes in PBro2 (phosphorescence quenching) and cardiac output (CO, echocardiography) were measured in different groups of anesthetized Sprague-Dawley rats (1.5% isoflurane, n = 5-8/group) randomized to Sham 2Nx or 2Nx and subsequently exposed to acute hemodilutional anemia (50% estimated blood volume exchange with 6% hydroxyethyl starch) or time-based controls (no hemodilution). Outcomes were assessed by ANOVA with significance assigned at P < 0.05. At baseline, 2Nx rats demonstrated reduced CO (49.9 ± 9.4 vs. 66.3 ± 19.3 mL/min; P = 0.014) and PBro2 (21.1 ± 2.9 vs. 32.4 ± 3.1 mmHg; P < 0.001) relative to Sham 2Nx rats. Following hemodilution, 2Nx rats demonstrated a further decrease in PBro2 (15.0 ± 6.3 mmHg, P = 0.022). Hemodiluted 2Nx rats did not demonstrate a comparable increase in CO after hemodilution compared with Sham 2Nx (74.8 ± 22.4 vs. 108.9 ± 18.8 mL/min, P = 0.003) that likely contributed to the observed reduction in PBro2. This impaired CO response was associated with reduced fractional shortening (33 ± 9 vs. 51 ± 5%) and increased left ventricular end-systolic volume (156 ± 51 vs. 72 ± 15 µL, P < 0.001) suggestive of systolic dysfunction. By contrast, hemodiluted Sham 2Nx animals demonstrated a robust increase in CO and preserved PBro2. These data support the hypothesis that the kidney plays a central role in maintaining cerebral perfusion and initiating the adaptive increase in CO required to optimize PBro2 during acute anemia.NEW & NOTEWORTHY This study has demonstrated that bilateral nephrectomy acutely impaired cardiac output (CO) and microvascular brain Po2 (PBro2), at baseline. Following acute hemodilution, nephrectomy prevented the adaptive increase in CO associated with acute hemodilution leading to a further reduction in PBro2, accentuating the degree of cerebral tissue hypoxia. These data support a role for the kidney in maintaining PBro2 and initiating the increase in CO that optimized brain perfusion during acute anemia.


Assuntos
Anemia , Débito Cardíaco , Circulação Cerebrovascular , Hemodiluição , Nefrectomia , Ratos Sprague-Dawley , Animais , Hemodiluição/métodos , Nefrectomia/métodos , Ratos , Masculino , Circulação Cerebrovascular/fisiologia , Anemia/fisiopatologia , Débito Cardíaco/fisiologia , Modelos Animais de Doenças , Encéfalo/fisiopatologia
5.
Gene ; 898: 148099, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38128788

RESUMO

Intron retention is a mechanism of post-transcriptional gene regulation, including genes involved in erythropoiesis. Erythropoietin (EPO) is a hormone without evidence of intracellular vesicle storage that regulates erythropoiesis. We hypothesize that EPO uses intron retention as a mechanism of post-transcriptional regulation in response to hypoxia and ischemia. Cell models of hypoxia and ischemia for kidney, liver, and brain cells were examined for intron retention by real time quantitative PCR. EPO expression increased in most cells except for blood brain barrier and liver cells. The intron retained transcript ratio decreased in brain cells, except for Astrocytes, but showed no change in kidney or liver after 24 h of ischemia. The shift in intron ratio was maintained when using poly (A) enriched cDNA, suggesting that intron retention is not due to immature transcripts. The expression of EPO was elevated at variable time points amongst cell models with the intron ratio also changing over a time course of 2 to 16 h after ischemia. We conclude that intron retention is a mechanism regulating EPO expression in response to ischemia in a tissue specific manner.


Assuntos
Eritropoetina , Humanos , Íntrons/genética , Eritropoetina/genética , Eritropoetina/metabolismo , Hipóxia/genética , Encéfalo/metabolismo , Isquemia
6.
Diabetes ; 72(7): 844-856, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812497

RESUMO

Impaired heart function can develop in individuals with diabetes in the absence of coronary artery disease or hypertension, suggesting mechanisms beyond hypertension/increased afterload contribute to diabetic cardiomyopathy. Identifying therapeutic approaches that improve glycemia and prevent cardiovascular disease are clearly required for clinical management of diabetes-related comorbidities. Since intestinal bacteria are important for metabolism of nitrate, we examined whether dietary nitrate and fecal microbial transplantation (FMT) from nitrate-fed mice could prevent high-fat diet (HFD)-induced cardiac abnormalities. Male C57Bl/6N mice were fed a low-fat diet (LFD), HFD, or HFD+Nitrate (4 mmol/L sodium nitrate) for 8 weeks. HFD-fed mice presented with pathological left ventricle (LV) hypertrophy, reduced stroke volume, and increased end-diastolic pressure, in association with increased myocardial fibrosis, glucose intolerance, adipose inflammation, serum lipids, LV mitochondrial reactive oxygen species (ROS), and gut dysbiosis. In contrast, dietary nitrate attenuated these detriments. In HFD-fed mice, FMT from HFD+Nitrate donors did not influence serum nitrate, blood pressure, adipose inflammation, or myocardial fibrosis. However, microbiota from HFD+Nitrate mice decreased serum lipids, LV ROS, and similar to FMT from LFD donors, prevented glucose intolerance and cardiac morphology changes. Therefore, the cardioprotective effects of nitrate are not dependent on reducing blood pressure, but rather mitigating gut dysbiosis, highlighting a nitrate-gut-heart axis. ARTICLE HIGHLIGHTS: Identifying therapeutic approaches that prevent cardiometabolic diseases are clearly important, and nitrate represents one such potential compound given its multifactorial metabolic effects. We aimed to determine whether nitrate could prevent high-fat diet (HFD)-induced cardiac abnormalities and whether this was dependent on the gut microbiome. Dietary nitrate attenuated HFD-induced pathological changes in cardiac remodelling, left ventricle reactive oxygen species, adipose inflammation, lipid homeostasis, glucose intolerance, and gut dysbiosis. Fecal microbial transplantation from nitrate-fed mice also prevented serum dyslipidemia, left ventricle reactive oxygen species, glucose intolerance, and cardiac dysfunction. Therefore, the cardioprotective effects of nitrate are related to mitigating gut dysbiosis, highlighting a nitrate-gut-heart axis.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Cardiopatias , Hipertensão , Masculino , Camundongos , Animais , Intolerância à Glucose/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Espécies Reativas de Oxigênio , Camundongos Obesos , Nitratos/farmacologia , Disbiose/microbiologia , Obesidade/metabolismo , Inflamação , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Fibrose , Camundongos Endogâmicos C57BL
8.
J Am Soc Nephrol ; 33(8): 1546-1567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35906089

RESUMO

BACKGROUND: Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS: We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS: Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION: These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.


Assuntos
Podócitos , Actinina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Basal Glomerular/metabolismo , Camundongos , Proteínas Oncogênicas/metabolismo , Podócitos/metabolismo , Proteômica
9.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058252

RESUMO

BACKGROUND: Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS: We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS: Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION: This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.


Assuntos
Fumar Cigarros , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Fumar Cigarros/efeitos adversos , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Nicotiana
10.
Am J Hypertens ; 35(3): 264-271, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34605538

RESUMO

BACKGROUND: The Spontaneously Hypertensive Rat (SHR) Colony was established in 1963 and is the most commonly used rodent model for studying heart failure (HF). Ideally, animal models should recapitulate the clinical disease as closely as possible. Any drift in a genetic model may create a new model that no longer adequately represents the human pathology. Further, instability overtime may lead to conflicting data between laboratories and/or irreproducible results. While systolic blood pressure (SBP) is closely monitored during inbreeding, the sequelae of HF (e.g., cardiac hypertrophy) are not. Thus, the object of this review was to investigate whether the hypertension-induced sequelae of HF in the SHR have remained stable after decades of inbreeding. METHODS: A systematic review was performed to evaluate indices of cardiovascular health in the SHR over the past 60 years. For post hoc statistical analyses, studies were separated into 2 cohorts: Initial (mid to late 1900s) and Current (early 2000s to present) Colony SHRs. Wistar-Kyoto rats (WKY) were used as controls. RESULTS: SBP was consistent between Initial and Current Colony SHRs. However, Current Colony SHRs presented with increased concentric hypertrophy (i.e., elevated heart weight and posterior wall thickness) while cardiac output remained consistent. Since these changes were not observed in the WKY controls, cardiac-derived changes in Current Colony SHRs were unlikely due to differences in environmental conditions. CONCLUSIONS: Together, these data firmly establish a cardiac-based phenotypic shift in the SHR model and provide important insights into the beneficial function of concentric hypertrophy in hypertension-induced HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Pressão Sanguínea , Cardiomegalia , Insuficiência Cardíaca/etiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
11.
Sci Rep ; 11(1): 17223, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446745

RESUMO

Cardiovascular and respiratory systems are anatomically and functionally linked; inspiration produces negative intrathoracic pressures that act on the heart and alter cardiac function. Inspiratory pressures increase with heart failure and can exceed the magnitude of ventricular pressure during diastole. Accordingly, respiratory pressures may be a confounding factor to assessing cardiac function. While the interaction between respiration and the heart is well characterized, the extent to which systolic and diastolic indices are affected by inspiration is unknown. Our objective was to understand how inspiratory pressure affects the hemodynamic assessment of cardiac function. To do this, we developed custom software to assess and separate indices of systolic and diastolic function into inspiratory, early expiratory, and late expiratory phases of respiration. We then compared cardiac parameters during normal breathing and with various respiratory loads. Variations in inspiratory pressure had a small impact on systolic pressure and function. Conversely, diastolic pressure strongly correlated with negative inspiratory pressure. Cardiac pressures were less affected by respiration during expiration; late expiration was the most stable respiratory phase. In conclusion, inspiration is a large confounding influence on diastolic pressure, but minimally affects systolic pressure. Performing cardiac hemodynamic analysis by accounting for respiratory phase yields more accuracy and analytic confidence to the assessment of diastolic function.


Assuntos
Testes de Função Cardíaca/métodos , Coração/fisiologia , Hemodinâmica/fisiologia , Respiração , Mecânica Respiratória/fisiologia , Animais , Diástole/fisiologia , Expiração/fisiologia , Humanos , Inalação/fisiologia , Masculino , Ratos Sprague-Dawley , Sístole/fisiologia , Traqueia/fisiologia
13.
Front Physiol ; 11: 501383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192539

RESUMO

BACKGROUND: Physiological rhythms in mammals are essential for maintaining health, whereas disruptions may cause or exacerbate disease pathogenesis. As such, our objective was to characterize how cigarette smoke exposure affects physiological rhythms of otherwise healthy mice using telemetry and cosinor analysis. METHODS: Female BALB/c mice were implanted with telemetry devices to measure body temperature, heart rate, systolic blood pressure (SBP), and activity. Following baseline measurements, mice were exposed to cigarette smoke for approximately 50 min twice daily during weekdays over 24 weeks. Physiological parameters were recorded after 1, 4, 8, and 24 weeks of exposure or after 4 weeks cessation following 4 weeks of cigarette smoke exposure. RESULTS: Acute cigarette smoke exposure resulted in anapyrexia, and bradycardia, with divergent effects on SBP. Long term, cigarette smoke exposure disrupted physiological rhythms after just 1 week, which persisted across 24 weeks of exposure (as shown by mixed effects on mesor, amplitude, acrophase, and goodness-of-fit using cosinor analysis). Four weeks of cessation was insufficient to allow full recovery of rhythms. CONCLUSION: Our characterization of the pathophysiology of cigarette smoke exposure on physiological rhythms of mice suggests that rhythm disruption may precede and contribute to disease pathogenesis. These findings provide a clear rationale and guide for the future use of chronotherapeutics.

14.
J Appl Physiol (1985) ; 129(4): 992-1005, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32881619

RESUMO

Techniques to comprehensively evaluate pulmonary function carry a variety of limitations, including the ability to continuously record intrathoracic pressures (ITP), acutely and chronically, in a natural state of freely behaving animals. Measurement of ITP can be used to derive other respiratory parameters, which provide insight to lung health. Our aim was to develop a surgical approach for the placement of a telemetry pressure sensor to measure ITP, providing the ability to chronically measure peak pressure, breath frequency, and timing of the respiratory cycle to facilitate circadian analyses related to breathing patterns. Applications of this technique are shown using a moderate hypoxic challenge. Male C57Bl/6 mice were implanted with radiotelemetry devices to record heart rate, temperature, activity, and ITP during 24-h normoxia, 24-h hypoxia ([Formula: see text] = 0.15), and return to 48-h normoxia. Radiotelemetry of ITP permitted the detection of hypoxia-induced increases in "the ITP equivalent" of ventilation, which were driven by increases in breathing frequency and ITP on a short-term time scale. Respiratory frequency, derived from pressure waveforms, was increased by a decrease in expiratory time without changes in inspiratory time. Chronically, telemetric recording allowed for circadian analyses of respiratory drive, as assessed by inspiratory pressure divided by inspiratory time, which was increased by hypoxia and remained elevated for 48 h of recovery. Furthermore, respiratory frequency demonstrated a circadian rhythm, which was disrupted through the recovery period. In conclusion, radiotelemetry of ITP is a viable, long-term, chronic methodology that extends traditional methods to evaluate respiratory function in mice.NEW & NOTEWORTHY We have demonstrated for the first time in mice that radiotelemetry is an effective tool for the continuous and chronic recording of intrathoracic pressure (ITP) to facilitate circadian rhythm analyses. We show that continuous 24-h hypoxic stress alters the circadian rhythms of heart rate, body temperature, activity, and respiratory parameters, acutely and perpetually, through normoxic recovery. Radiotelemetry of ITP can complement traditional methods for evaluating respiratory function and better our understanding of respiratory pathophysiology.


Assuntos
Ritmo Circadiano , Telemetria , Animais , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração
15.
Physiol Rep ; 8(13): e14500, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32652899

RESUMO

Type 1 diabetes (T1D) has been reported to negatively affect the health of skeletal muscle, though the underlying mechanisms are unknown. Myostatin, a myokine whose increased expression is associated with muscle-wasting diseases, has not been reported in humans with T1D but has been demonstrated to be elevated in preclinical diabetes models. Thus, the purpose of this study was to determine if there is an elevated expression of myostatin in the serum and skeletal muscle of persons with T1D compared to controls. Secondarily, we aimed to explore relationships between myostatin expression and clinically important metrics (e.g., HbA1c , strength, lean mass) in women and men with (N = 31)/without T1D (N = 24) between 18 and 72 years old. Body composition, baseline strength, blood sample and vastus lateralis muscle biopsy were evaluated. Serum, but not muscle, myostatin expression was significantly elevated in those with T1D versus controls, and to a greater degree in T1D women than T1D men. Serum myostatin levels were not significantly associated with HbA1c nor disease duration. A significant correlation between serum myostatin expression and maximal voluntary contraction (MVC) and body fat mass was demonstrated in control subjects, but these correlations did not reach significance in those with T1D (MVC: R = 0.64 controls vs. R = 0.37 T1D; Body fat: R = -0.52 controls/R = -0.02 T1D). Collectively, serum myostatin was correlated with lean mass (R = 0.45), and while this trend was noted in both groups separately, neither reached statistical significance (R = 0.47 controls/R = 0.33 T1D). Overall, while those with T1D exhibited elevated serum myostatin levels (particularly females) myostatin expression was not correlated with clinically relevant metrics despite some of these relationships existing in controls (e.g., lean/fat mass). Future studies will be needed to fully understand the mechanisms underlying increased myostatin in T1D, with relationships to insulin dosing being particularly important to elucidate.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Adiposidade , Adolescente , Adulto , Idoso , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Músculo Esquelético/fisiopatologia , Miostatina/sangue , Miostatina/genética , Fatores Sexuais
16.
Am J Physiol Heart Circ Physiol ; 318(5): H1139-H1158, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216614

RESUMO

Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases: 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.


Assuntos
Pressão Sanguínea , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Guias de Prática Clínica como Assunto , Função Ventricular , Animais , Testes de Função Cardíaca/métodos , Testes de Função Cardíaca/normas
17.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674086

RESUMO

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Assuntos
Cardiopatias , Distrofia Muscular de Duchenne , Animais , Metabolismo Energético , Cardiopatias/metabolismo , Ventrículos do Coração , Humanos , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
18.
J Physiol ; 598(4): 683-697, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845331

RESUMO

KEY POINTS: Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT: TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic ß-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias/fisiopatologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas/fisiologia , Animais , Cardiomiopatias/genética , Dieta Hiperlipídica , Feminino , Proteínas Ativadoras de GTPase/genética , Técnicas de Inativação de Genes , Glucose/metabolismo , Ventrículos do Coração/fisiopatologia , Insulina , Masculino , Músculo Esquelético , Proteínas/genética , Ratos , Fatores Sexuais
19.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938481

RESUMO

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/genética , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo
20.
Can J Physiol Pharmacol ; 96(11): 1060-1068, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30102865

RESUMO

During physiological stress (e.g., exercise, hypoxia), blood flow is shunted to specific anatomical regions to protect critical organs; yet, splenic blood flow in these circumstances remains to be investigated. Despite being classically viewed as a non-critical organ, recent experimental and epidemiological evidence suggests the spleen plays a significant role in cardiovascular pathophysiology. We hypothesized that splenic blood flow is prioritized in the development of heart failure (i.e., chronic state of reduced cardiac output). Five-week-old male Wistar rats were randomized for either myocardial infarction (MI; n = 58) or sham (n = 56) surgery. At 2, 5, and 9 weeks post-surgery, Doppler ultrasound measurements of the splenic, left renal, left common carotid, and left femoral arteries were performed. Cardiac function was assessed at all time points using echocardiography and at 9 weeks post-surgery using invasive hemodynamic analysis. Splenic and cerebral blood flow was preferentially maintained at 9 weeks post-MI, whereas blood flow to the lower limb and kidney were reduced. Spleen size increased by 5 weeks post-MI and remained elevated. Splenic blood flow was maintained in conditions of decreased cardiac output, when other tissues showed decreased blood flow. The maintenance of blood flow in the face of decreased cardiac output indicates that splenic function is being prioritized during heart failure.


Assuntos
Débito Cardíaco , Insuficiência Cardíaca/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Fluxo Sanguíneo Regional , Baço/irrigação sanguínea , Animais , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia , Coração/diagnóstico por imagem , Coração/fisiopatologia , Humanos , Masculino , Infarto do Miocárdio/etiologia , Tamanho do Órgão , Ratos , Ratos Wistar , Baço/diagnóstico por imagem , Baço/fisiopatologia , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...