Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768840

RESUMO

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Assuntos
Mupirocina , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Hidroxilação , Antibacterianos/química
2.
Nat Prod Rep ; 40(1): 174-201, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222427

RESUMO

Covering: up to 2022A very large group of biosynthetically linked fungal secondary metabolites are formed via the key intermediate emodin and its corresponding anthrone. The group includes anthraquinones such as chrysophanol and cladofulvin, the grisandienes geodin and trypacidin, the diphenyl ether pestheic acid, benzophenones such as monodictyphenone and various xanthones including the prenylated shamixanthones, the agnestins and dimeric xanthones such as the ergochromes, cryptosporioptides and neosartorin. Such compounds exhibit a wide range of bioactivities and as such have been utilised in traditional medicine for centuries, as well as garnering more recent interest from the pharmaceutical sector. Additional interest comes from industries such as textiles and cosmetics due to their use as natural colourants. A variety of biosynthetic routes and mechanisms have been proposed for this family of compounds, being altered and updated as new biosynthetic methods develop and new results emerge. After nearly 100 years of such research, this review aims to provide a comprehensive overview of what is currently known about the biosynthesis of this important family, amalgamating the early chemical and biosynthetic studies with the more recent genetics-based advances and comparative bioinformatics.


Assuntos
Produtos Biológicos , Emodina , Xantonas , Emodina/metabolismo , Produtos Biológicos/farmacologia , Antraquinonas/farmacologia , Antraquinonas/metabolismo , Xantonas/farmacologia , Xantonas/química , Xantonas/metabolismo , Genômica
3.
Angew Chem Weinheim Bergstr Ger ; 135(47): e202312514, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38515435

RESUMO

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.

4.
J Nat Prod ; 85(9): 2236-2250, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36098709

RESUMO

This Review provides a critical analysis of the literature covering the naturally occurring partially reduced perylenequinones (PQs) from fungi without carbon substituents (which can be named class A perylenequinones) and discusses their structures, stereochemistry, biosynthesis, and biological activities as appropriate. Perylenequinones are natural pigments with a perylene skeleton produced by certain fungi, aphids, some plants, and animal species. These compounds display several biological activities, e.g., antimicrobial, anti-HIV, photosensitizers, cytotoxic, and phytotoxic. It describes 36 fungal PQs and cites 81 references, covering from 1956 to August 2022.


Assuntos
Fungos , Perileno , Pigmentos Biológicos , Quinonas , Animais , Fungos/química , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Quinonas/química , Quinonas/farmacologia
5.
J Nat Prod ; 85(3): 572-580, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35170975

RESUMO

Three new polyketide-derived natural products, cladobotric acids G-I (1-3), and six known metabolites (4, 5, 8-11) were isolated from fermentation of the fungus Cladobotryum sp. grown on rice. Their structures were elucidated by extensive spectroscopic methods. Two metabolites, cladobotric acid A (4) and pyrenulic acid A (10), were converted to a series of new products (12-20) by semisynthesis. The antibacterial activities of all these compounds were investigated against the Gram-positive pathogen Staphylococcus aureus including methicillin-susceptible (MSSA), methicillin-resistant and vancomycin-intermediate (MRSA/VISA), and heterogeneous vancomycin-intermediate (hVISA) strains. Results of these antibacterial assays revealed structural features of the unsaturated decalins important for biological activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Vancomicina
6.
Org Biomol Chem ; 19(1): 182-187, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33107888

RESUMO

Fusarochromene isolated from the plant pathogenic fungus, Fusarium sacchari is closely related to a group of mycotoxins including fusarochromanone previously isolated from various Fusaria spp. Despite their assumed polyketide biogenesis, incorporation studies with 13C-labelled acetate, glycerol and tryptophans show that fusarochromene is unexpectedly derived via oxidative cleavage of the aromatic amino acid tryptophan. A putative biosynthetic gene cluster has been identified.


Assuntos
Fusarium/metabolismo , Triptofano/metabolismo , Fusarium/genética , Família Multigênica/genética , Oxirredução
7.
Org Lett ; 22(16): 6349-6353, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806153

RESUMO

The kalimantacins make up a family of hybrid polyketide-nonribosomal peptide-derived natural products that display potent and selective antibiotic activity against multidrug resistant strains of Staphylococcus aureus. Herein, we report the first total synthesis of kalimantacin A, in which three fragments are prepared and then united via Sonogashira and amide couplings. The enantioselective synthetic approach is convergent, unlocking routes to further kalimantacins and analogues for structure-activity relationship studies and clinical evaluation.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Produtos Biológicos , Carbamatos/síntese química , Ácidos Graxos Insaturados/síntese química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
8.
Angew Chem Int Ed Engl ; 59(26): 10549-10556, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32208550

RESUMO

The enoyl-acyl carrier protein reductase enzyme FabI is essential for fatty acid biosynthesis in Staphylococcus aureus and represents a promising target for the development of novel, urgently needed anti-staphylococcal agents. Here, we elucidate the mode of action of the kalimantacin antibiotics, a novel class of FabI inhibitors with clinically-relevant activity against multidrug-resistant S. aureus. By combining X-ray crystallography with molecular dynamics simulations, in vitro kinetic studies and chemical derivatization experiments, we characterize the interaction between the antibiotics and their target, and we demonstrate that the kalimantacins bind in a unique conformation that differs significantly from the binding mode of other known FabI inhibitors. We also investigate mechanisms of acquired resistance in S. aureus and identify key residues in FabI that stabilize the binding of the antibiotics. Our findings provide intriguing insights into the mode of action of a novel class of FabI inhibitors that will inspire future anti-staphylococcal drug development.


Assuntos
Antibacterianos/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/metabolismo , Inibidores Enzimáticos/metabolismo , Staphylococcus aureus/enzimologia , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Carbamatos/metabolismo , Carbamatos/farmacologia , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/genética , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mutação Puntual , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos
9.
ACS Chem Biol ; 15(2): 494-503, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31977176

RESUMO

Mupirocin, a commercially available antibiotic produced by Pseudomonas fluorescens NCIMB 10586, and thiomarinol, isolated from the marine bacterium Pseudoalteromonas sp. SANK 73390, both consist of a polyketide-derived monic acid homologue esterified with either 9-hydroxynonanoic acid (mupirocin, 9HN) or 8-hydroxyoctanoic acid (thiomarinol, 8HO). The mechanisms of formation of these deceptively simple 9HN and 8HO fatty acid moieties in mup and tml, respectively, remain unresolved. To define starter unit generation, the purified mupirocin proteins MupQ, MupS, and MacpD and their thiomarinol equivalents (TmlQ, TmlS and TacpD) have been expressed and shown to convert malonyl coenzyme A (CoA) and succinyl CoA to 3-hydroxypropionoyl (3-HP) or 4-hydroxybutyryl (4-HB) fatty acid starter units, respectively, via the MupQ/TmlQ catalyzed generation of an unusual bis-CoA/acyl carrier protein (ACP) thioester, followed by MupS/TmlS catalyzed reduction. Mix and match experiments show MupQ/TmlQ to be highly selective for the correct CoA. MacpD/TacpD were interchangeable but alternate trans-acting ACPs from the mupirocin pathway (MacpA/TacpA) or a heterologous ACP (BatA) were nonfunctional. MupS and TmlS selectivity was more varied, and these reductases differed in their substrate and ACP selectivity. The solution structure of MacpD determined by NMR revealed a C-terminal extension with partial helical character that has been shown to be important for maintaining high titers of mupirocin. We generated a truncated MacpD construct, MacpD_T, which lacks this C-terminal extension but retains an ability to generate 3-HP with MupS and MupQ, suggesting further downstream roles in protein-protein interactions for this region of the ACP.


Assuntos
Proteína de Transporte de Acila/química , Antibacterianos/síntese química , Proteínas de Bactérias/química , Mupirocina/análogos & derivados , Mupirocina/síntese química , Oxirredutases/química , Proteína de Transporte de Acila/isolamento & purificação , Antibacterianos/biossíntese , Proteínas de Bactérias/isolamento & purificação , Mupirocina/biossíntese , Oxirredutases/isolamento & purificação , Pseudoalteromonas/enzimologia , Pseudomonas fluorescens/enzimologia , Especificidade por Substrato
10.
Chem Sci ; 11(42): 11570-11578, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34094403

RESUMO

Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation - confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 - converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.

11.
Chem Sci ; 11(20): 5221-5226, 2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34122978

RESUMO

With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engineering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible. Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin.

12.
Chem Sci ; 10(36): 8478-8489, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803427

RESUMO

Exchange of 32 different sub-fragments of the C-methyltransferase (C-MeT), pseudo-ketoreductase (ΨKR) and ketoreductase (KR) catalytic domains of the tenellin iterative Type I polyketide synthase non ribosomal peptide synthetase (PKS-NRPS) TENS by homologous fragments from the desmethylbassianin (DMBS) and militarinone (MILS) PKS-NRPS led to the creation of chimeric synthetases in which programming fidelity was altered, resulting in the production of mixtures of products with different methylation patterns and chain lengths. Swap of KR domain subfragments with the homologous fragments from the KR of the heptaketide militarinone synthetase resulted in the synthesis of penta, hexa and heptaketides. The results of these and previous experiments are rationalised by considering the existence of competition for acyl-carrier protein (ACP) bound substrates between different catalytic domains of the PKS. In particular, competition between the C-MeT and ketoreductase domains (KR) can account for methylation programming, and competition between the KR and the off-loading NRPS accounts for chain-length selectivity.

13.
Angew Chem Int Ed Engl ; 58(36): 12446-12450, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31294525

RESUMO

The presence of ß-branches in the structure of polyketides that possess potent biological activity underpins the widespread importance of this structural feature. Kalimantacin is a polyketide antibiotic with selective activity against staphylococci, and its biosynthesis involves the unprecedented incorporation of three different and sequential ß-branching modifications. We use purified single and multi-domain enzyme components of the kalimantacin biosynthetic machinery to address in vitro how the pattern of ß-branching in kalimantacin is controlled. Robust discrimination of enzyme products required the development of a generalisable assay that takes advantage of 13 C NMR of a single 13 C label incorporated into key biosynthetic mimics combined with favourable dynamic properties of an acyl carrier protein. We report a previously unassigned modular enoyl-CoA hydratase (mECH) domain and the assembly of enzyme constructs and cascades that are able to generate each specific ß-branch.


Assuntos
Radioisótopos de Carbono/análise , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Carbamatos/química , Carbamatos/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Modelos Moleculares , Especificidade por Substrato
14.
Chem Sci ; 10(10): 2930-2939, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30996871

RESUMO

Three novel dimeric xanthones, cryptosporioptides A-C were isolated from Cryptosporiopsis sp. 8999 and their structures elucidated. Methylation of cryptosporioptide A gave a methyl ester with identical NMR data to cryptosporioptide, a compound previously reported to have been isolated from the same fungus. However, HRMS analysis revealed that cryptosporioptide is a symmetrical dimer, not a monomer as previously proposed, and the revised structure was elucidated by extensive NMR analysis. The genome of Cryptosporiopsis sp. 8999 was sequenced and the dimeric xanthone (dmx) biosynthetic gene cluster responsible for the production of the cryptosporioptides was identified. Gene disruption experiments identified a gene (dmxR5) encoding a cytochrome P450 oxygenase as being responsible for the dimerisation step late in the biosynthetic pathway. Disruption of dmxR5 led to the isolation of novel monomeric xanthones. Cryptosporioptide B and C feature an unusual ethylmalonate subunit: a hrPKS and acyl CoA carboxylase are responsible for its formation. Bioinformatic analysis of the genomes of several fungi producing related xanthones, e.g. the widely occurring ergochromes, and related metabolites allows detailed annotation of the biosynthetic genes, and a rational overall biosynthetic scheme for the production of fungal dimeric xanthones to be proposed.

15.
Chem Sci ; 10(1): 233-238, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30746079

RESUMO

Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from Paecilomyces variotii along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin (agn) biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis. In particular, identification of a reductase responsible for in vivo anthraquinone to anthrol conversion confirms a previously postulated essential step in aromatic deoxygenation of anthraquinones, e.g. emodin to chrysophanol.

16.
Sci Rep ; 9(1): 1542, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733464

RESUMO

The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.


Assuntos
Antibacterianos/metabolismo , Mupirocina/biossíntese , Pseudomonas fluorescens/metabolismo , Antibacterianos/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Mupirocina/química , Mutagênese , Plasmídeos/genética , Plasmídeos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/química , Policetídeos/metabolismo , Pseudomonas fluorescens/genética
17.
Nat Commun ; 9(1): 3940, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258052

RESUMO

Strobilurins from fungi are the inspiration for the creation of the ß-methoxyacrylate class of agricultural fungicides. However, molecular details of the biosynthesis of strobilurins have remained cryptic. Here we report the sequence of genomes of two fungi that produce strobilurins and show that each contains a biosynthetic gene cluster, which encodes a highly reducing polyketide synthase with very unusual C-terminal hydrolase and methyltransferase domains. Expression of stpks1 in Aspergillus oryzae leads to the production of prestrobilurin A when the fermentation is supplemented with a benzoyl coenzyme A (CoA) analogue. This enables the discovery of a previously unobserved route to benzoyl CoA. Reconstruction of the gene cluster in A. oryzae leads to the formation of prestrobilurin A, and addition of the gene str9 encoding an FAD-dependent oxygenase leads to the key oxidative rearrangement responsible for the creation of the ß-methoxyacrylate toxophore. Finally, two methyltransferases are required to complete the synthesis.


Assuntos
Basidiomycota/enzimologia , Policetídeo Sintases/metabolismo , Estrobilurinas/metabolismo , Aspergillus oryzae , Basidiomycota/genética , Família Multigênica
18.
J Fungi (Basel) ; 4(3)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104550

RESUMO

Aspergillus oryzae is traditionally used in East Asia for the production of food and brewing. In addition, it has been developed into a suitable host for the heterologous expression of natural product biosynthetic genes and gene clusters, enabling the functional analysis of the encoded enzymes. A. oryzae shares a 99.5% genome homology with Aspergillus flavus, but their secondary metabolomes differ significantly and various compounds unique to A. oryzae have been reported. While using A. oryzae as a host for heterologous expression experiments we discovered two new metabolites in extracts of A. oryzae M-2-3 with an unusual maleidride backbone, which were named oryzine A and B. Their structures were elucidated by high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) analysis. Their structural relationships with known maleidrides implied involvement of a citrate synthase (CS) and a polyketide (PKS) or fatty acid synthase (FAS) in their biosynthesis. Analysis of the A. oryzae genome revealed a single putative biosynthetic gene cluster (BGC) consistent with the hypothetical biosynthesis of the oryzines. These findings increase knowledge of the chemical potential of A. oryzae and are the first attempt to link a novel product of this fungus with genomic data.

19.
Org Biomol Chem ; 16(30): 5524-5532, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027987

RESUMO

The strobilurins are important antifungal metabolites isolated from a number of basidiomycetes and have been valuable leads for the development of commercially important fungicides. Isotopic labelling studies with early and advanced intermediates confirm for the first time that they are produced via a linear tetraketide, primed with the rare benzoate starter unit, itself derived from phenylalanine via cinnamate. Isolation of a novel biphenyl metabolite, pseudostrobilurin B, provides evidence for the involvement of an epoxide in the key rearrangement to form the ß-methoxyacrylate moiety essential for biological activity. Formation of two bolineol related metabolites, strobilurins Y and Z, also probably involves epoxide intermediates. Time course studies indicate a likely biosynthetic pathway from strobilurin A, with the simplest non-subsubstituted benzoate ring, to strobilurin G with a complex dioxepin terpenoid-derived substituent. Precursor-directed biosynthetic studies allow production of a number of novel ring-halogenated analogues as well as a new pyridyl strobilurin. These studies also provide evidence for a non-linear biosynthetic relationship between strobilurin A and strobilurin B.


Assuntos
Antifúngicos/metabolismo , Basidiomycota/metabolismo , Fungicidas Industriais/metabolismo , Estrobilurinas/metabolismo , Antifúngicos/química , Basidiomycota/química , Vias Biossintéticas , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Fungicidas Industriais/química , Halogenação , Estrobilurinas/química
20.
Chem Sci ; 9(17): 4109-4117, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780540

RESUMO

The cycloaspeptides are bioactive pentapeptides produced by various filamentous fungi, which have garnered interest from the agricultural industry due to the reported insecticidal activity of the minor metabolite, cycloaspeptide E. Genome sequencing, bioinformatics and heterologous expression confirmed that the cycloaspeptide gene cluster contains a minimal 5-module nonribosomal peptide synthetase (NRPS) and a new type of trans-acting N-methyltransferase (N-MeT). Deletion of the N-MeT encoding gene and subsequent feeding studies determined that two modules of the NRPS preferentially accept and incorporate N-methylated amino acids. This discovery allowed the development of a system with unprecedented control over substrate supply and thus output, both increasing yields of specific metabolites and allowing the production of novel fluorinated analogues. Furthermore, the biosynthetic pathway to ditryptophenaline, another fungal nonribosomal peptide, was shown to be similar, in that methylated phenylalanine is accepted by the ditryptophenaline NRPS. Again, this allowed the directed biosynthesis of a fluorinated analogue, through the feeding of a mutant strain. These discoveries represent a new paradigm for the production of N-methylated cyclic peptides via the selective incorporation of N-methylated free amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...