Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 91(5): e23745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785179

RESUMO

Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.


Assuntos
Besouros , Proteoma , Animais , Besouros/metabolismo , Masculino , Proteoma/metabolismo , Proteoma/análise , Feminino , Proteômica/métodos , Filogenia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/análise , Espermatozoides/metabolismo
2.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100395

RESUMO

Despite the value of recombinant inbred lines for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to recombinant inbred lines for many traits leverages selecting phenotypically extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here, we describe such an extreme quantitative trait locus, or extreme quantitative trait loci, mapping strategy that builds on an existing multiparental population, the Drosophila Synthetic Population Resource, and involves phenotyping and genotyping a population derived by mixing hundreds of Drosophila Synthetic Population Resource recombinant inbred lines. Simulations demonstrate that challenging, yet experimentally tractable extreme quantitative trait loci designs (≥4 replicates, ≥5,000 individuals/replicate, and selecting the 5-10% most extreme animals) yield at least the same power as traditional recombinant inbred line-based quantitative trait loci mapping and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated extreme quantitative trait loci experiment that identifies 7 quantitative trait loci for caffeine resistance. Two mapped extreme quantitative trait loci factors replicate loci previously identified in recombinant inbred lines, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyping/genotyping extreme quantitative trait loci design has considerable advantages.


Assuntos
Drosophila melanogaster , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Drosophila/genética , Drosophila melanogaster/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...