Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Des Eng ; 8(7): 842-852, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37404447

RESUMO

We present a method of enabling photochemical reactions in water by using biomimetic, water-soluble liposomes and a specifically functionalized perylene diimide chromophore. Linking two flexible saturated C4-alkyl chains with terminal positively charged trimethylammonium groups to the rigid perylene diimide core yielded [1]2+ allowing for its co-assembly at the lipid bilayer interface of DOPG liposomes (DOPG = 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) with a preferred orientation and in close proximity to the water interface. According to molecular dynamics simulations the chromophore aligns preferably parallel to the membrane surface which is supported by confocal microscopy. Irradiation experiments with visible light and in the presence of a negatively charged, water-soluble oxidant were slower in the DOPG-membrane than under acetonitrile-water reaction conditions. The generated radical species was characterized by EPR spectroscopy in an acetonitrile-water mixture and associated to the DOPG-membrane. Time-resolved emission studies revealed a static quenching process for the initial electron transfer from photoexcited [1]2+ to the water soluble oxidant. The findings presented in this study yield design principles for the functionalization of lipid bilayer membranes which will be relevant for the molecular engineering of artificial cellular organelles and nano-reactors based on biomimetic vesicles and membranes.

2.
J Phys Chem A ; 126(43): 8070-8081, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260519

RESUMO

Calculations of Förster Resonance Energy Transfer (FRET) often neglect the influence of different chromophore orientations or changes in the spectral overlap. In this work, we present two computational approaches to estimate the energy transfer rate between chromophores embedded in lipid bilayer membranes. In the first approach, we assess the transition dipole moments and the spectral overlap by means of quantum chemical calculations in implicit solvation, and we investigate the alignment and distance between the chromophores in classical molecular dynamics simulations. In the second, all properties are evaluated integrally with hybrid quantum mechanical/molecular mechanics (QM/MM) calculations. Both approaches come with advantages and drawbacks, and despite the fact that they do not agree quantitatively, they provide complementary insights on the different factors that influence the FRET rate. We hope that these models can be used as a basis to optimize energy transfers in nonisotropic media.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Teoria Quântica , Bicamadas Lipídicas , Simulação de Dinâmica Molecular
3.
Chembiochem ; 22(22): 3140-3147, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34223700

RESUMO

Lipid bilayer membranes are ubiquitous in natural chemical conversions. They enable self-assembly and compartmentalization of reaction partners and it becomes increasingly evident that a thorough fundamental understanding of these concepts is highly desirable for chemical reactions and solar energy conversion with artificial systems. This minireview focusses on selected case studies from recent years, most of which were inspired by either membrane-facilitated light harvesting or respective charge transfer. The main focus is on highly biomimetic liposomes with artificial chromophores, and some cases for polymer-membranes will be made. Furthermore, we categorized these studies into energy transfer and electron transfer, with phospholipid vesicles, and polymer membranes for light-driven reactions.


Assuntos
Materiais Biomiméticos/química , Bicamadas Lipídicas/química , Energia Solar , Transferência de Energia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...