Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1256712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046416

RESUMO

Objective: Monoclonal antibody (Mab) treatments have significantly improved the quality and quantity of life, but they are some of the most expensive treatments, resulting in a degree of hesitancy to introduce new Mab agents. A system for estimating the effect of Mab drugs, in general, would optimally inform health strategy and fully realize how a single scientific discovery can deliver health benefits. We evaluated such a method with several well-established Mab regimens. Methods: We selected five different Mab regimens in oncology and rheumatology in England. We carried out two systematic literature reviews and meta-analyses to assess health outcomes (Health Assessment Questionnaire-Disability Index for rheumatoid arthritis; overall mortality for melanoma) from real-world data and compared them to the outcomes from randomized control trials (RCTs). We applied economic modeling to estimate the net monetary benefits for health outcomes for the estimated patient population size for each Mab regimen. Results: Meta-analyses of 27 eligible real-world data (RWD) sets and 26 randomized controlled trial (RCT) sets found close agreement between the observed and expected health outcomes. A Markov model showed the net positive monetary benefit in three Mab regimens and the negative benefit in two regimens. However, because of limited access to NHS data, the economic model made several assumptions about the number of treated patients and the cost of treatment to the NHS, the accuracy of which may affect the estimation of the net monetary benefit. Conclusion: RCT results reliably inform the real-world experience of Mab treatments. Calculation of the net monetary benefit by the algorithm described provides a valuable overall measure of the health impact, subject to the accuracy of data inputs. This study provides a compelling case for building a comprehensive, systematized, and accessible database and related analytics, on all Mab treatments within health services.

2.
J Clin Oncol ; 41(15): 2800-2814, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36720089

RESUMO

PURPOSE: Although representing the majority of newly diagnosed cancers, patients with breast cancer appear less vulnerable to COVID-19 mortality compared with other malignancies. In the absence of patients on active cancer therapy included in vaccination trials, a contemporary real-world evaluation of outcomes during the various pandemic phases, as well as of the impact of vaccination, is needed to better inform clinical practice. METHODS: We compared COVID-19 morbidity and mortality among patients with breast cancer across prevaccination (February 27, 2020-November 30, 2020), Alpha-Delta (December 1, 2020-December 14, 2021), and Omicron (December 15, 2021-January 31, 2022) phases using OnCovid registry participants (ClinicalTrials.gov identifier: NCT04393974). Twenty-eight-day case fatality rate (CFR28) and COVID-19 severity were compared in unvaccinated versus double-dosed/boosted patients (vaccinated) with inverse probability of treatment weighting models adjusted for country of origin, age, number of comorbidities, tumor stage, and receipt of systemic anticancer therapy within 1 month of COVID-19 diagnosis. RESULTS: By the data lock of February 4, 2022, the registry counted 613 eligible patients with breast cancer: 60.1% (n = 312) hormone receptor-positive, 25.2% (n = 131) human epidermal growth factor receptor 2-positive, and 14.6% (n = 76) triple-negative. The majority (61%; n = 374) had localized/locally advanced disease. Median age was 62 years (interquartile range, 51-74 years). A total of 193 patients (31.5%) presented ≥ 2 comorbidities and 69% (n = 330) were never smokers. In total, 392 (63.9%), 164 (26.8%), and 57 (9.3%) were diagnosed during the prevaccination, Alpha-Delta, and Omicron phases, respectively. Analysis of CFR28 demonstrates comparable estimates of mortality across the three pandemic phases (13.9%, 12.2%, 5.3%, respectively; P = .182). Nevertheless, a significant improvement in outcome measures of COVID-19 severity across the three pandemic time periods was observed. Importantly, when reported separately, unvaccinated patients from the Alpha-Delta and Omicron phases achieved comparable outcomes to those from the prevaccination phase. Of 566 patients eligible for the vaccination analysis, 72 (12.7%) were fully vaccinated and 494 (87.3%) were unvaccinated. We confirmed with inverse probability of treatment weighting multivariable analysis and following a clustered robust correction for participating center that vaccinated patients achieved improved CFR28 (odds ratio [OR], 0.19; 95% CI, 0.09 to 0.40), hospitalization (OR, 0.28; 95% CI, 0.11 to 0.69), COVID-19 complications (OR, 0.16; 95% CI, 0.06 to 0.45), and reduced requirement of COVID-19-specific therapy (OR, 0.24; 95% CI, 0.09 to 0.63) and oxygen therapy (OR, 0.24; 95% CI, 0.09 to 0.67) compared with unvaccinated controls. CONCLUSION: Our findings highlight a consistent reduction of COVID-19 severity in patients with breast cancer during the Omicron outbreak in Europe. We also demonstrate that even in this population, a complete severe acute respiratory syndrome coronavirus 2 vaccination course is a strong determinant of improved morbidity and mortality from COVID-19.


Assuntos
Neoplasias da Mama , COVID-19 , Vacinas , Humanos , Pessoa de Meia-Idade , Feminino , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/terapia , Teste para COVID-19 , Pandemias
3.
Lancet Oncol ; 23(7): 865-875, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660139

RESUMO

BACKGROUND: The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. METHODS: In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. FINDINGS: As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47·4%] were women and 1822 [52·6%] were men, with a median age of 68 years [IQR 57-77]). 2033 (58·5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31·0%) during the alpha-delta phase, and 365 (10·5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33·3%) of 339 were fully vaccinated and 165 (48·7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16·6%) of 915 were fully vaccinated and 21 (2·3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0·32 [95% CI 0·19-0·61) and 28 days (0·34 [0·16-0·79]), complications due to COVID-19 (0·26 [0·17-0·46]), and hospitalisation due to COVID-19 (0·17 [0·09-0·32]), and had less requirements for COVID-19-specific therapy (0·22 [0·15-0·34]) and oxygen therapy (0·24 [0·14-0·43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. INTERPRETATION: Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust.


Assuntos
COVID-19 , Neoplasias , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Surtos de Doenças , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/terapia , Oxigênio , Sistema de Registros , Estudos Retrospectivos , SARS-CoV-2
4.
Cancers (Basel) ; 13(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885194

RESUMO

An increased mortality risk was observed in patients with cancer during the first wave of COVID-19. Here, we describe determinants of mortality in patients with solid cancer comparing the first and second waves of COVID-19. A retrospective analysis encompassing two waves of COVID-19 (March-May 2020; December 2020-February 2021) was performed. 207 patients with cancer were matched to 452 patients without cancer. Patient demographics and oncological variables such as cancer subtype, staging and anti-cancer treatment were evaluated for association with COVID-19 mortality. Overall mortality was lower in wave two compared to wave one, HR 0.41 (95% CI: 0.30-0.56). In patients with cancer, mortality was 43.6% in wave one and 15.9% in wave two. In hospitalized patients, after adjusting for age, ethnicity and co-morbidities, a history of cancer was associated with increased mortality in wave one but not wave two. In summary, the second UK wave of COVID-19 is associated with lower mortality in hospitalized patients. A history of solid cancer was not associated with increased mortality despite the dominance of the more transmissible B.1.1.7 SARS-CoV-2 variant. In both waves, metastatic disease and systemic anti-cancer treatment appeared to be independent risk factors for death within the combined cancer cohort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...