Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37761860

RESUMO

Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.


Assuntos
Proteínas de Escherichia coli , Quadruplex G , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Instabilidade Genômica , Proteínas de Escherichia coli/genética
2.
Nucleic Acids Res ; 51(D1): D226-D231, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36280237

RESUMO

The Nucleic Acid Circular Dichroism Database (NACDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data about nucleic acids, and the associated experimental metadata, structural models, and links to literature. NACDDB covers CD data for various nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids, and various nucleic acid derivatives. The entries are linked to primary sequence and experimental structural data, as well as to the literature. Additionally, for all entries, 3D structure models are provided. All entries undergo expert validation and curation procedures to ensure completeness, consistency, and quality of the data included. The NACDDB is open for submission of the CD data for nucleic acids. NACDDB is available at: https://genesilico.pl/nacddb/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Ácidos Nucleicos , Dicroísmo Circular , Síncrotrons , Ácidos Nucleicos/química
3.
Microorganisms ; 8(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080799

RESUMO

G-rich DNA repeats that can form G-quadruplex structures are prevalent in bacterial genomes and are frequently associated with regulatory regions of genes involved in virulence, antigenic variation, and antibiotic resistance. These sequences are also inherently mutagenic and can lead to changes affecting cell survival and adaptation. Transcription of the G-quadruplex-forming repeat (G3T)n in E. coli, when mRNA comprised the G-rich strand, promotes G-quadruplex formation in DNA and increases rates of deletion of G-quadruplex-forming sequences. The genomic instability of G-quadruplex repeats may be a source of genetic variability that can influence alterations and evolution of bacteria. The DNA chaperone Hfq is involved in the genetic instability of these G-quadruplex sequences. Inactivation of the hfq gene decreases the genetic instability of G-quadruplex, demonstrating that the genomic instability of this regulatory element can be influenced by the E. coli highly pleiotropic Hfq protein, which is involved in small noncoding RNA regulation pathways, and DNA organization and packaging. We have shown previously that the protein binds to and stabilizes these sequences, increasing rates of their genomic instability. Here, we extend this analysis to characterize the role of the C-terminal domain of Hfq protein in interaction with G-quadruplex structures. This allows to better understand the function of this specific region of the Hfq protein in genomic instability.

4.
Microorganisms ; 8(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877879

RESUMO

Certain G-rich DNA repeats can form quadruplex in bacterial chromatin that can present blocks to DNA replication and, if not properly resolved, may lead to mutations. To understand the participation of quadruplex DNA in genomic instability in Escherichia coli (E. coli), mutation rates were measured for quadruplex-forming DNA repeats, including (G3T)4, (G3T)8, and a RET oncogene sequence, cloned as the template or nontemplate strand. We evidence that these alternative structures strongly influence mutagenesis rates. Precisely, our results suggest that G-quadruplexes form in E. coli cells, especially during transcription when the G-rich strand can be displaced by R-loop formation. Structure formation may then facilitate replication misalignment, presumably associated with replication fork blockage, promoting genomic instability. Furthermore, our results also evidence that the nucleoid-associated protein Hfq is involved in the genetic instability associated with these sequences. Hfq binds and stabilizes G-quadruplex structure in vitro and likely in cells. Collectively, our results thus implicate quadruplexes structures and Hfq nucleoid protein in the potential for genetic change that may drive evolution or alterations of bacterial gene expression.

5.
Toxicol Mech Methods ; 24(1): 73-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24156546

RESUMO

Based on recently published initial experimental results on the intercalation of a class of broad spectrum antiparasitic compounds, we present a purely theoretical approach for determining if these compounds may preferentially intercalate with guanosine/cytosine (GC)-rich or adenosine/thymidine (TA)-rich regions of DNA. The predictive model presented herein is based upon utilization of density functional theory (DFT) to determine a priori how the best intercalator may energetically and sterically interact with each of the nucleoside base pairs. A potential new method using electrostatic potential maps (EPMs) to visually select the best poses is introduced and compared to the existing brute-force center of mass (COM) approach. The EPM and COM predictions are in agreement with each other, but the EPM method is potentially much more efficient. We report that 4-azatryptantrin, the best intercalator, is predicted to favor π-stacking with GC over that of TA by approximately 2-4 kcal/mol. This represents a significant difference if one takes into account the Boltzmann distribution at physiological temperature. This theoretical method will be utilized to guide future experimental studies on the elucidation of possible mechanism(s) for the action of these antiparasitic compounds at the molecular level.


Assuntos
DNA/química , DNA/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
7.
J Biol Chem ; 287(40): 33412-23, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22872635

RESUMO

DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.


Assuntos
Canais de Cátion TRPP/metabolismo , Imunoprecipitação da Cromatina , Citosol/metabolismo , DNA/química , DNA/metabolismo , Dano ao DNA , Primers do DNA/genética , Replicação do DNA , Instabilidade Genômica , Células HeLa , Humanos , Íntrons , Conformação de Ácido Nucleico , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Purinas/química , Pirimidinas/química , Canais de Cátion TRPP/genética
8.
J Theor Biol ; 300: 360-7, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22326895

RESUMO

Spontaneous mutations are stochastic events. The mutation rate, defined as mutations per genome per replication, is generally very low, and it is widely accepted that spontaneous mutations occur at defined, but different, rates in bacteriophage and in bacterial, insect, and mammalian cells. The calculation of mutation rates has proved to be a significant problem. Mutation rates can be calculated by following mutant accumulation during growth or from the distribution of mutants obtained in parallel cultures. As Luria and Delbrück described in 1943, the number of mutants in parallel populations of bacterial cells varies widely depending on when a spontaneous mutation occurs during growth of the culture. Since 1943, many mathematical refinements to estimating rates, called estimators, have been described to facilitate determination of the mutation rate from the distribution or frequency of mutants detected following growth of parallel cultures. We present a rigorous mathematical solution to the mutation rate problem using an unbiased and consistent estimator. Using this estimator we demonstrate experimentally that mutation rates can be easily calculated by determining mutant accumulation, that is, from the number of mutants measured in two successive generations. Moreover, to verify the consistency of our estimator we conduct a series of simulation trials that show a surprisingly rapid convergence to the targeted mutation rate (reached between 25th and 30th generations).


Assuntos
Bactérias/genética , Modelos Genéticos , Taxa de Mutação , Animais , Bactérias/crescimento & desenvolvimento , Meios de Cultura , Plasmídeos/genética , Processos Estocásticos
9.
Nat Chem Biol ; 6(9): 652-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20676085

RESUMO

Instability of (CTG) x (CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than a dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped-strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is lacking. We have used targeted recombination to create a series of isogenic HeLa cell lines in which (CTG) x (CAG) repeats are replicated from an ectopic copy of the Myc (also known as c-myc) replication origin. In this system, the tendency of chromosomal (CTG) x (CAG) tracts to expand or contract was affected by origin location and the leading or lagging strand replication orientation of the repeats, and instability was enhanced by prolonged cell culture, increased TNR length and replication inhibition. Hairpin cleavage by synthetic zinc finger nucleases in these cells has provided the first direct evidence for the formation of hairpin structures during replication in vivo.


Assuntos
Replicação do DNA/fisiologia , DNA/biossíntese , DNA/genética , Instabilidade de Microssatélites , Conformação de Ácido Nucleico , Repetições de Trinucleotídeos/genética , Células Cultivadas , DNA/química , Endonucleases/genética , Endonucleases/metabolismo , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Origem de Replicação/genética , Origem de Replicação/fisiologia , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
10.
J Med Chem ; 53(9): 3558-65, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20373766

RESUMO

Tryptanthrins have potential therapeutic activity against a wide variety of pathogenic organisms, although little is known about their mechanism. Activity against Escherichia coli, however, has not been examined. The effects of tryptanthrin (indolo[2,1-b]quinazolin-6,12-dione) and nine derivatives on growth, survival, and mutagenesis in E. coli were examined. Analogues with a nitrogen atom at the 4-position of tryptanthrin stopped log phase growth of E. coli cultures at concentrations as low as 5 microM. Tryptanthrins decreased viability during incubation with cells in buffer by factors of 10(-2) to <10(-6) at 0.2-40 microM. Derivatives with an oxime group at the 6-position exhibited the greatest bactericidal activity. Most tryptanthrins were not mutagenic in several independent assays, although the 4-aza and 4 aza-8-fluoro derivatives increased frameshift mutations about 22- and 4-fold, respectively. Given the structure of trypanthrins, binding to DNA may occur by intercalation. From analysis using a sensitive linking number assay, several tryptanthrins, especially the 4-aza and 6-oximo derivatives, intercalate into DNA.


Assuntos
Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Quinazolinas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Mutagênese/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Mol Carcinog ; 48(4): 336-49, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19306311

RESUMO

The DNA repeats (CTG).(CAG), (CGG).(CCG), (GAA).(TTC), (ATTCT).(AGAAT), and (CCTG).(CAGG), undergo expansion in humans leading to neurodegenerative disease. A genetic assay for repeat instability has revealed that the activities of RecA and RecB during replication restart are involved in a high rate of deletion of (CTG).(CAG) repeats in E. coli. This assay has been applied to (CCTG).(CAGG) repeats associated with myotonic dystrophy type 2 (DM2) that expand to 11 000 copies and to spinocerebellar ataxia type 10 (SCA10) (ATTCT).(AGAAT) repeats that expand to 4500 copies in affected individuals. DM2 (CCTG).(CAGG) repeats show a moderate rate of instability, less than that observed for the myotonic dystrophy type 1 (CTG).(CAG) repeats, while the SCA10 (ATTCT).(AGAAT) repeats were remarkably stable in E. coli. In contrast to (CTG).(CAG) repeats, deletions of the DM2 and SCA10 repeats were not dependent on RecA and RecB, suggesting that replication restart may not be a predominant mechanism by which these repeats undergo deletion. These results suggest that different molecular mechanisms, or pathways, are responsible for the instability of different disease-associated DNA repeats in E. coli. These pathways involve simple replication slippage and various sister strand exchange events leading to deletions or expansions, often associated with plasmid dimerization. The differences in the mechanisms of repeat deletion may result from the differential propensity of these repeats to form various DNA secondary structures and their differential proclivity for primer-template misalignment during replication.


Assuntos
Instabilidade Genômica , Distrofia Miotônica/genética , Sequências Repetitivas de Ácido Nucleico/genética , Deleção de Sequência/genética , Ataxias Espinocerebelares/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Humanos , Mutação/genética , Plasmídeos/genética , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 106(9): 3270-5, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218442

RESUMO

All DNA repeats known to undergo expansion leading to human neurodegenerative disease can form one, or several, alternative conformations, including hairpin, slipped strand, triplex, quadruplex, or unwound DNA structures. These alternative structures may interfere with the normal cellular processes of transcription, DNA repair, replication initiation, or polymerase elongation and thereby contribute to the genetic instability of these repeat tracts. We show that (CCTG) x (CAGG) repeats, in the first intron of the ZNF9 gene associated with myotonic dystrophy type 2, form slipped-strand DNA structures in a length-dependent fashion upon reduplexing. The threshold for structure formation on reduplexing is between 36 and 42 repeats in length. Alternative DNA structures also form in (CCTG)(58) x (CAGG)(58) and larger repeat tracts in plasmids at physiological superhelical densities. This represents an example of a sequence that forms slipped-strand DNA from the energy of DNA supercoiling. Moreover, Z-DNA forms in a (TG) x (CA) tract within the complex repeat sequence 5' of the (CCTG)(n) x (CAGG)(n) repeat in the ZNF9 gene. Upon reduplexing, the presence of the flanking sequence containing the Z-DNA-forming tract reduced the extent of slipped-strand DNA formation by 62% for (CCTG)(57) x (CAGG)(57) compared with 58 pure repeats without the flanking sequence. This finding suggests that the Z-DNA-forming sequence in the DM2 gene locus may have a protective effect of reducing the potential for slipped-strand DNA formation in (CCTG)(n) x (CAGG)(n) repeats.


Assuntos
DNA Forma Z/genética , Distrofia Miotônica/genética , Região 5'-Flanqueadora , Sequência de Bases , Humanos , Dados de Sequência Molecular , Distrofia Miotônica/classificação , Alinhamento de Sequência
13.
Mol Cell Biol ; 27(22): 7828-38, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17846122

RESUMO

Spinocerebellar ataxia type 10 (SCA10) is associated with expansion of (ATTCT)n repeats (where n is the number of repeats) within the ataxin 10 (ATX10/E46L) gene. The demonstration that (ATTCT)n tracts can act as DNA unwinding elements (DUEs) in vitro has suggested that aberrant replication origin activity occurs at expanded (ATTCT)n tracts and may lead to their instability. Here, we confirm these predictions. The wild-type ATX10 locus displays inefficient origin activity, but origin activity is elevated at the expanded ATX10 loci in patient-derived cells. To test whether (ATTCT)n tracts can potentiate origin activity, cell lines were constructed that contain ectopic copies of the c-myc replicator in which the essential DUE was replaced by ATX10 DUEs with (ATTCT)n. ATX10 DUEs containing (ATTCT)27 or (ATTCT)48, but not (ATTCT)8 or (ATTCT)13, could substitute functionally for the c-myc DUE, but (ATTCT)48 could not act as an autonomous replicator. Significantly, chimeric c-myc replicators containing ATX10 DUEs displayed length-dependent (ATTCT)n instability. By 250 population doublings, dramatic two- and fourfold length expansions were observed for (ATTCT)27 and (ATTCT)48 but not for (ATTCT)8 or (ATTCT)13. These results implicate replication origin activity as one molecular mechanism associated with the instability of (ATTCT)n tracts that are longer than normal length.


Assuntos
Expansão das Repetições de DNA , Replicação do DNA , Proteínas do Tecido Nervoso/genética , Sequências Repetitivas de Ácido Nucleico , Origem de Replicação , Ataxina-10 , Instabilidade Genômica , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ataxias Espinocerebelares/genética
14.
Front Biosci ; 12: 4788-99, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17569609

RESUMO

Slipped strand DNA structures are formed when complementary strands comprising direct repeats pair in a misaligned, or slipped, fashion along the DNA helix axis. Although slipped strand DNA may form in almost any direct repeat, to date, these structures have only been detected in short DNA repeats, termed unstable DNA repeats, in which expansion is associated with many neurodegenerative diseases. This alternative DNA structure, or a similar slipped intermediate DNA that may form during DNA replication or repair, may be a causative factor in the instability of the DNA sequences that can form these structures.


Assuntos
DNA/química , Modelos Genéticos , Reparo do DNA , Enzimas Reparadoras do DNA/fisiologia , Expansão das Repetições de DNA , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Instabilidade Genômica , Conformação de Ácido Nucleico , Sequências Repetitivas de Ácido Nucleico
15.
PLoS Biol ; 4(11): e350, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17105341

RESUMO

Antigen receptor gene rearrangements are initiated by the RAG1/2 protein complex, which recognizes specific DNA sequences termed RSS (recombination signal sequences). The RAG recombinase can also catalyze transposition: integration of a DNA segment bounded by RSS into an unrelated DNA target. For reasons that remain poorly understood, such events occur readily in vitro, but are rarely detected in vivo. Previous work showed that non-B DNA structures, particularly hairpins, stimulate transposition. Here we show that the sequence of the four nucleotides at a hairpin tip modulates transposition efficiency over a surprisingly wide (>100-fold) range. Some hairpin targets stimulate extraordinarily efficient transposition (up to 15%); one serves as a potent and specific transposition inhibitor, blocking capture of targets and destabilizing preformed target capture complexes. These findings suggest novel regulatory possibilities and may provide insight into the activities of other transposases.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Homeodomínio/genética , Recombinação Genética/genética , Transposases/genética , Animais , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transposases/metabolismo
16.
J Biol Chem ; 281(38): 27950-5, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16873366

RESUMO

(CAG)(n)*(CTG)(n) expansion is associated with many neurodegenerative diseases. Repeat instability has been extensively studied in bacterial plasmids, where repeats undergo deletion at high rates. We report an assay for (CAG)(n)*(CTG)(n) deletion from the chloramphenicol acetyltransferase gene integrated into the Escherichia coli chromosome. In strain AB1157, deletion rates for 25-60 (CAG) x (CTG) repeats integrated in the chromosome ranged from 6.88 x 10(-9) to 1.33 x 10(-10), or approximately 6,300 to 660,000-fold lower than in plasmid pBR325. In contrast to the situation in plasmids, deletions occur at a higher rate when (CTG)(43), rather than (CAG)(43), comprised the leading template strand, and complete rather than partial deletions were the predominant mutation observed. Repeats were also stable on long term growth following multiple passages through exponential and stationary phase. Mutations in priA and recG increased or decreased deletion rates, but repeats were still greatly stabilized in the chromosome. The remarkable stability of (CAG)(n) x (CTG)(n) repeats in the E. coli chromosome may result from the differences in the mechanisms for replication or the probability for recombination afforded by a high plasmid copy number. The integration of (CAG)(n) x (CTG)(n) repeats into the chromosome provides a model system in which the inherent stability of these repeats reflects that in the human genome more closely.


Assuntos
Cromossomos Bacterianos , Escherichia coli/genética , Instabilidade Genômica , Doenças Neurodegenerativas/genética , Repetições de Trinucleotídeos , Deleção Cromossômica , Humanos , Plasmídeos
17.
Mutat Res ; 595(1-2): 5-22, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16472829

RESUMO

(CTG)n.(CAG)n repeats undergo deletion at a high rate in plasmids in Escherichia coli in a process that involves RecA and RecB. In addition, DNA replication fork progression can be blocked during synthesis of (CTG)n.(CAG)n repeats. Replication forks stalled at (CTG)n.(CAG)n repeats may be rescued by replication restart that involves recombination as well as enzymes involved in replication and DNA repair, and this process may be responsible for the high rate of repeat deletion in E. coli. To test this hypothesis (CAG)n.(CTG)n deletion rates were measured in several E. coli strains carrying mutations involved in replication restart. (CAG)n.(CTG)n deletion rates were decreased, relative to the rates in wild type cells, in strains containing mutations in priA, recG, ruvAB, and recO. Mutations in priB and priC resulted in small reductions in deletion rates. In a recF strain, rates were decreased when (CAG)n comprised the leading template strand, but rates were increased when (CTG)n comprised the leading template. Deletion rates were increased slightly in a recJ strain. The mutational spectra for most mutant strains were altered relative to those in parental strains. In addition, purified PriA and RecG proteins showed unexpected binding to single-stranded, duplex, and forked DNAs containing (CAG)n and/or (CTG)n loop-outs in various positions. The results presented are consistent with an interpretation that the high rates of trinucleotide repeat instability observed in E. coli result from the attempted restart of replication forks stalled at (CAG)n.(CTG)n repeats.


Assuntos
Replicação do DNA/genética , Escherichia coli/genética , Deleção de Sequência/genética , Expansão das Repetições de Trinucleotídeos/genética , Adenosina Trifosfatases/metabolismo , Sequência de Bases , DNA Helicases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Especificidade por Substrato
18.
Biochemistry ; 45(1): 152-8, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16388590

RESUMO

The SfiI restriction enzyme binds to DNA as a tetramer holding two usually distant DNA recognition sites together before cleavage of the four DNA strands. To elucidate structural properties of the SfiI-DNA complex, atomic force microscopy (AFM) imaging of the complexes under noncleaving conditions (Ca2+ instead of Mg2+ in the reaction buffer) was performed. Intramolecular complexes formed by protein interaction between two binding sites in one DNA molecule (cis interaction) as well as complexes formed by the interaction of two sites in different molecules (trans interaction) were analyzed. Complexes were identified unambiguously by the presence of a tall spherical blob at the DNA intersections. To characterize the path of DNA within the complex, the angles between the DNA helices in the proximity of the complex were systematically analyzed. All the data show clear-cut bimodal distributions centered around peak values corresponding to 60 degrees and 120 degrees. To unambiguously distinguish between the crossed and bent models for the DNA orientation within the complex, DNA molecules with different arm lengths flanking the SfiI binding site were designed. The analysis of the AFM images for complexes of this type led to the conclusion that the DNA recognition sites within the complex are crossed. The angles of 60 degrees or 120 degrees between the DNA helices correspond to a complex in which one of the helices is flipped with respect to the orientation of the other. Complexes formed by five different recognition sequences (5'-GGCCNNNNNGGCC-3'), with different central base pairs, were also analyzed. Our results showed that complexes containing the two possible orientations of the helices were formed almost equally. This suggests no preferential orientation of the DNA cognate site within the complex, suggesting that the central part of the DNA binding site does not form strong sequence specific contacts with the protein.


Assuntos
DNA Super-Helicoidal/química , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Conformação de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , Soluções Tampão , Cálcio/química , Cátions Bivalentes , DNA/metabolismo , DNA Super-Helicoidal/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Magnésio/química , Microscopia de Força Atômica/métodos , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Estereoisomerismo , Especificidade por Substrato
20.
Mutat Res ; 570(2): 215-26, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15708580

RESUMO

To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a -1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.


Assuntos
Replicação do DNA , DNA/química , Conformação de Ácido Nucleico , Sequência de Bases , Primers do DNA , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...