Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38787535

RESUMO

In natural and engineered environmental systems, calcium sulfate (CaSO4) nucleation commonly occurs at dynamic liquid-liquid interfaces. Although CaSO4 is one of the most common minerals in oil spills and oil-water separation, the mechanisms driving its nucleation at these liquid-liquid interfaces remain poorly understood. In this study, using in situ small-angle X-ray scattering (SAXS), we examined CaSO4 nucleation at oil-water interfaces and found that within 60 minutes of reaction, short rod-shaped nanoparticles (with a radius of gyration (Rg) of 17.2 ± 2.7 nm and a length of 38.2 ± 5.8 nm) had formed preferentially at the interfaces. Wide-angle X-ray scattering (WAXS) analysis identified these nanoparticles as gypsum (CaSO4·2H2O). In addition, spherial nanoparticles measuring 4.1 nm in diameter were observed at oil-water interfaces, where surface-enhanced Raman spectroscopy (SERS) revealed an elevated pH compared to the bulk solution. The negatively charged oil-water interfaces preferentially adsorb calcium ions, collectively promoting CaSO4 formation there. CaSO4 particle formation at the oil-water interface follows a nonclassical nucleation (N-CNT) pathway by forming ultrasmall amorphous spherical particles which then aggregate to form intermediate nanoparticles, subsequently growing into nanorod-shaped gypsum. These findings of this study provide insights into mineral scaling during membrane separation and can inform more efficient oil transport in energy recovery systems.

2.
ACS Sens ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753414

RESUMO

Lateral flow assays (LFAs) are currently the most popular point-of-care diagnostics, rapidly transforming disease diagnosis from expensive doctor checkups and laboratory-based tests to potential on-the-shelf commodities. Yet, their sensitive element, a monoclonal antibody, is expensive to formulate, and their long-term storage depends on refrigeration technology that cannot be met in resource-limited areas. In this work, LCB1 affibodies (antibody mimetic miniproteins) were conjugated to bovine serum albumin (BSA) to afford a high-avidity synthetic capture (LCB1-BSA) capable of detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and virus like particles (VLPs). Substituting the monoclonal antibody 2B04 for LCB1-BSA (stable up to 60 °C) significantly improved the thermal stability, shelf life, and affordability of plasmonic-fluor-based LFAs (p-LFAs). Furthermore, this substitution significantly improved the sensitivity of p-LFAs toward the spike protein and VLPs with precise quantitative ability over 2 and 3 orders of magnitude, respectively. LCB1-BSA sensors could detect VLPs at 100-fold lower concentrations, and this improvement, combined with their robust nature, enabled us to develop an aerosol sampling technology to detect aerosolized viral particles. Synthetic captures like LCB1-BSA can increase the ultrasensitivity, availability, sustainability, and long-term accuracy of LFAs while also decreasing their manufacturing costs.

3.
Biomed Microdevices ; 26(1): 15, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289481

RESUMO

There is a clinical need for differential diagnosis of the latent versus active stages of tuberculosis (TB) disease by a simple-to-administer test. Alpha-crystallin (Acr) and early secretory antigenic target-6 (ESAT-6) are protein biomarkers associated with the latent and active stages of TB, respectively, and could be used for differential diagnosis. We therefore developed a microneedle patch (MNP) designed for application to the skin to quantify Acr and ESAT-6 in dermal interstitial fluid by enzyme-linked immunosorbent assay (ELISA). We fabricated mechanically strong microneedles made of polystyrene and coated them with capture antibodies against Acr and ESAT-6. We then optimized assay sensitivity to achieve a limit of detection of 750 pg/ml and 3,020 pg/ml for Acr and ESAT-6, respectively. This study demonstrates the feasibility of an MNP-based ELISA for differential diagnosis of latent TB disease.


Assuntos
Tuberculose , Humanos , Ensaio de Imunoadsorção Enzimática , Tuberculose/diagnóstico , Anticorpos , Transporte Biológico , Biomarcadores
4.
Nat Nanotechnol ; 19(5): 677-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38272973

RESUMO

Biological olfactory systems are highly sensitive and selective, often outperforming engineered chemical sensors in highly complex and dynamic environments. As a result, there is much interest in using biological systems to build sensors. However, approaches to read-out information from biological systems, especially neural signals, tend to be suboptimal due to the number of electrodes that can be used and where these can be placed. Here we aim to overcome this suboptimality in neural information read-out by using a nano-enabled neuromodulation strategy to augment insect olfaction-based chemical sensors. By harnessing the photothermal properties of nanostructures and releasing a select neuromodulator on demand, we show that the odour-evoked response from the interrogated regions of the insect olfactory system can not only be enhanced but can also improve odour identification.


Assuntos
Odorantes , Olfato , Animais , Olfato/fisiologia , Odorantes/análise , Nanotecnologia/métodos , Insetos/fisiologia , Nanoestruturas/química , Neurotransmissores
5.
Nano Lett ; 24(1): 229-237, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146928

RESUMO

Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.


Assuntos
COVID-19 , Humanos , Ensaio de Imunoadsorção Enzimática , COVID-19/diagnóstico , Fluorimunoensaio , SARS-CoV-2 , Biomarcadores , Sensibilidade e Especificidade
6.
Nano Lett ; 23(22): 10171-10178, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922456

RESUMO

Multiplexed quantification of low-abundance protein biomarkers in complex biofluids is important for biomedical research and clinical diagnostics. However, in situ sampling without perturbing biological systems remains challenging. In this work, we report a buoyant biosensor that enables in situ monitoring of protein analytes at attomolar concentrations with a 15 min temporal resolution. The buoyant biosensor implemented with fluorescent nanolabels enabled the ultrasensitive and multiplexed detection and quantification of cytokines. Implementing the biosensor in a digital manner (i.e., counting the individual nanolabels) further improves the low detection limit. We demonstrate that the biosensor enables the detection and quantification of the time-varying concentrations of cytokines (e.g., IL-6 and TNF-α) in macrophage culture media without perturbing the live cells. The easy-to-apply biosensor with attomolar sensitivity and multiplexing capability can enable an in situ analysis of protein biomarkers in various biofluids and tissues to aid in understanding biological processes and diagnosing and treating diverse diseases.


Assuntos
Técnicas Biossensoriais , Citocinas , Biomarcadores
7.
Nanoscale Horiz ; 8(11): 1537-1555, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37672212

RESUMO

Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.


Assuntos
Neurologia , Neurônios , Animais , Neurônios/metabolismo , Neurogênese/fisiologia , Encéfalo/metabolismo , Nanotecnologia , Mamíferos
8.
Environ Sci Technol ; 57(30): 11056-11066, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467155

RESUMO

Because of its favorable thermodynamics and fast kinetics, heterogeneous solid nucleation on membranes triggers early-stage mineral scaling. Iron (hydr)oxide, a typical membrane scale, initially forms as nanoparticles that interact with surface functional groups on membranes, but these nanoscale phenomena are difficult to observe in real time. In this study, we utilized in situ grazing incidence small angle X-ray scattering and ex situ atomic force microscopy to examine the heterogeneous nucleation of iron (hydr)oxide on surface functional groups commonly used in membranes, including hydroxyl (OH), carboxyl (COOH), and fluoro (F) groups. We found that, compared to nucleation on hydrophilic OH- and COOH-surfaces, the high hydrophobicity of an F-modified surface significantly reduced the extents of both heterogeneously and homogeneously formed iron (hydr)oxide nucleation. Moreover, on the OH-surface, the high functional group density of 0.76 nmol/cm2 caused faster heterogeneous nucleation than that on a COOH-surface, with a density of 0.28 ± 0.04 nmol/cm2. The F-surface also had the highest heterogeneous nucleation energy barrier (26 ± 0.6 kJ/mol), followed by COOH- (23 ± 0.8 kJ/mol) and OH- (20 ± 0.9 kJ/mol) surfaces. The kinetic and thermodynamic information provided here will help us better predict the rates and extents of early-stage scaling of iron (hydr)oxide nanoparticles in membrane processes.

9.
Nano Lett ; 23(12): 5654-5662, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307329

RESUMO

Expansion microscopy (ExM) is a rapidly emerging super-resolution microscopy technique that involves isotropic expansion of biological samples to improve spatial resolution. However, fluorescence signal dilution due to volumetric expansion is a hindrance to the widespread application of ExM. Here, we introduce plasmon-enhanced expansion microscopy (p-ExM) by harnessing an ultrabright fluorescent nanoconstruct, called plasmonic-fluor (PF), as a nanolabel. The unique structure of PFs renders nearly 15000-fold brighter fluorescence signal intensity and higher fluorescence retention following the ExM protocol (nearly 76%) compared to their conventional counterparts (<16% for IR-650). Individual PFs can be easily imaged using conventional fluorescence microscopes, making them excellent "digital" labels for ExM. We demonstrate that p-ExM enables improved tracing and decrypting of neural networks labeled with PFs, as evidenced by improved quantification of morphological markers (nearly a 2.5-fold increase in number of neurite terminal points). Overall, p-ExM complements the existing ExM techniques for probing structure-function relationships of various biological systems.


Assuntos
Corantes , Microscopia de Fluorescência/métodos
10.
Angew Chem Int Ed Engl ; 62(30): e202305646, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235528

RESUMO

Chiral metal-organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc-[Zn(2-MeIm)2 , 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41 , which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 µM and the corresponding limit of chiral detection of 300 µM for representative chiral amino acid, D- and L- alanine.

11.
Small ; 19(44): e2207239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37104850

RESUMO

Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.


Assuntos
Nanopartículas , Humanos , Fluorescência
12.
ACS Appl Mater Interfaces ; 15(15): 18598-18607, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015072

RESUMO

Traditional cold chain systems of collection, transportation, and storage of biofluid specimens for eventual analysis pose a huge financial and environmental burden. These systems are impractical in pre-hospital and resource-limited settings, where refrigeration and electricity are not reliable or even available. Here, we develop an innovative technology using metal-organic frameworks (MOFs), a novel class of organic-inorganic hybrids with high thermal stability, as encapsulates for preserving the integrity of protein biomarkers in biofluids under ambient or non-refrigerated storage conditions. We encapsulate prostate-specific antigen (PSA) in whole patient plasma using hydrophilic zeolitic imidazolate framework-90 (ZIF-90) for preservation at 40 °C for 4 weeks and eventual on-demand reconstitution for antibody-based assays with recovery above 95% compared to storage at -20 °C. Without ZIF-90 encapsulation, only 10-30% of the PSA immunoactivity remained. Furthermore, we demonstrate encapsulation of multiple cancer biomarker proteins in whole patient plasma using ZIF-8 or ZIF-90 encapsulants for eventual on-demand reconstitution and analysis after 1 week at 40 °C. Overall, MOF encapsulation of patient biofluids is important as climate change may be affecting the stability and increase costs of maintaining biospecimen cold chain custody for the collection, transportation, and storage of biospecimens prior to analysis or for biobanking regardless of any countries' affluence.


Assuntos
Estruturas Metalorgânicas , Humanos , Masculino , Antígeno Prostático Específico , Bancos de Espécimes Biológicos
13.
Nat Biomed Eng ; 7(12): 1556-1570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36732621

RESUMO

Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.


Assuntos
Imunoconjugados , Nanopartículas , Humanos , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática , Anticorpos , Testes Imediatos
14.
Elife ; 122023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852737

RESUMO

For decades, investigators have studied the interaction of Mycobacterium tuberculosis (Mtb) with macrophages, which serve as a major cellular niche for the bacilli. Because Mtb are prone to aggregation, investigators rely on varied methods to disaggregate the bacteria for these studies. Here, we examined the impact of routinely used preparation methods on bacterial cell envelope integrity, macrophage inflammatory responses, and intracellular Mtb survival. We found that both gentle sonication and filtering damaged the mycobacterial cell envelope and markedly impacted the outcome of infections in mouse bone marrow-derived macrophages. Unexpectedly, sonicated bacilli were hyperinflammatory, eliciting dramatically higher TLR2-dependent gene expression and elevated secretion of IL-1ß and TNF-α. Despite evoking enhanced inflammatory responses, sonicated bacilli replicated normally in macrophages. In contrast, Mtb that had been passed through a filter induced little inflammatory response, and they were attenuated in macrophages. Previous work suggests that the mycobacterial cell envelope lipid, phthiocerol dimycocerosate (PDIM), dampens macrophage inflammatory responses to Mtb. However, we found that the impact of PDIM depended on the method used to prepare Mtb. In conclusion, widely used methodologies to disaggregate Mtb may introduce experimental artifacts in Mtb-host interaction studies, including alteration of host inflammatory signaling, intracellular bacterial survival, and interpretation of bacterial mutants.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Macrófagos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Fagossomos/metabolismo , Interações Hospedeiro-Patógeno
15.
Cell Rep Methods ; 2(8): 100267, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046626

RESUMO

Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.


Assuntos
Citocinas , Tuberculose , Humanos , Citocinas/metabolismo , Tuberculose/metabolismo , Macrófagos , Linfócitos T/metabolismo
16.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916374

RESUMO

Osteoarthritis is the most common joint disease in the world with significant societal consequences but lacks effective disease-modifying interventions. The pathophysiology consists of a prominent inflammatory component that can be targeted to prevent cartilage degradation and structural defects. Intracellular metabolism has emerged as a culprit of the inflammatory response in chondrocytes, with both processes co-regulating each other. The role of glutamine metabolism in chondrocytes, especially in the context of inflammation, lacks a thorough understanding and is the focus of this work. We display that mouse chondrocytes utilize glutamine for energy production and anabolic processes. Furthermore, we show that glutamine deprivation itself causes metabolic reprogramming and decreases the inflammatory response of chondrocytes through inhibition of NF-κB activity. Finally, we display that glutamine deprivation promotes autophagy and that ammonia is an inhibitor of autophagy. Overall, we identify a relationship between glutamine metabolism and inflammatory signaling and display the need for increased study of chondrocyte metabolic systems.


Assuntos
Condrócitos , Osteoartrite , Animais , Cartilagem , Condrócitos/metabolismo , Glutamina/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoartrite/metabolismo
17.
Cell Rep ; 38(11): 110507, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294888

RESUMO

Macrophage adhesion and stretching have been shown to induce interleukin (IL)-1ß production, but the mechanism of this mechanotransduction remains unclear. Here we specify the molecular link between mechanical tension on tissue-resident macrophages and activation of the NLRP3 inflammasome, which governs IL-1ß production. NLRP3 activation enhances antimicrobial defense, but excessive NLRP3 activity causes inflammatory tissue damage in conditions such as pulmonary fibrosis and acute respiratory distress syndrome. We find that the actin-bundling protein L-plastin (LPL) significantly enhances NLRP3 assembly. Specifically, LPL enables apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) oligomerization during NLRP3 assembly by stabilizing ASC interactions with the kinase Pyk2, a component of cell-surface adhesive structures called podosomes. Upon treatment with exogenous NLRP3 activators, lung-resident alveolar macrophages (AMs) lacking LPL exhibit reduced caspase-1 activity, IL-1ß cleavage, and gasdermin-D processing. LPL-/- mice display resistance to bleomycin-induced lung injury and fibrosis. These findings identify the LPL-Pyk2-ASC pathway as a target for modulation in NLRP3-mediated inflammatory conditions.


Assuntos
Inflamassomos , Fibrose Pulmonar , Animais , Bleomicina , Caspase 1/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana , Camundongos , Proteínas dos Microfilamentos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente
18.
Res Sq ; 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35194598

RESUMO

Lateral flow assays (LFAs) are the cornerstone of point-of-care diagnostics. Although rapid and inexpensive, they are 1000-fold less sensitive than laboratory-based tests and cannot be used for definitive negative diagnosis. Here, we overcome this fundamental limitation by employing plasmonically-enhanced nanoscale colorimetric and fluorescent labels. Plasmonic LFAs (p-LFAs) enabled ultrasensitive detection and quantification of low abundance analytes, without compromising the direct visual detection of conventional LFAs. Dynamic ranges and limits of detection were up to 100-fold superior to "gold standard" ELISA (enzyme-linked immunosorbent assay). p-LFAs had sample-to-answer time of 20 min, compared to 4 hours for ELISA, while achieving over 95% analytical sensitivity and 100% analytical specificity for antibodies and antigens of SARS-CoV-2 in human specimens. We also demonstrate that the p-LFAs enable quantitative detection of the target analytes in a standard-free manner. p-LFAs offer potential as a broadly adaptable point-of-care diagnostic platform that outperforms standard laboratory tests in sensitivity, speed, dynamic range, ease of use, and cost.

19.
ACS Nano ; 16(2): 2345-2354, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040633

RESUMO

Rapid, ultrasensitive, and selective quantification of circulating microRNA (miRNA) biomarkers in body fluids is increasingly deployed in early cancer diagnosis, prognosis, and therapy monitoring. While nanoparticle tags enable detection of nucleic acid or protein biomarkers with digital resolution and subfemtomolar detection limits without enzymatic amplification, the response time of these assays is typically dominated by diffusion-limited transport of the analytes or nanotags to the biosensor surface. Here, we present a magnetic activate capture and digital counting (mAC+DC) approach that utilizes magneto-plasmonic nanoparticles (MPNPs) to accelerate single-molecule sensing, demonstrated by miRNA detection via toehold-mediated strand displacement. Spiky Fe3O4@Au MPNPs with immobilized target-specific probes are "activated" by binding with miRNA targets, followed by magnetically driven transport through the bulk fluid toward nanoparticle capture probes on a photonic crystal (PC). By spectrally matching the localized surface plasmon resonance of the MPNPs to the PC-guided resonance, each captured MPNP locally quenches the PC reflection efficiency, thus enabling captured MPNPs to be individually visualized with high contrast for counting. We demonstrate quantification of the miR-375 cancer biomarker directly from unprocessed human serum with a 1 min response time, a detection limit of 61.9 aM, a broad dynamic range (100 aM to 10 pM), and a single-base mismatch selectivity. The approach is well-suited for minimally invasive biomarker quantification, enabling potential applications in point-of-care testing with short sample-to-answer time.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Biomarcadores Tumorais , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , MicroRNAs/genética , Microscopia , Ressonância de Plasmônio de Superfície
20.
ACS Appl Mater Interfaces ; 14(2): 3207-3217, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34995447

RESUMO

Chemiresistors based on metal-insulator-metal structures are attractive transducers for rapid tracing of a wide repertoire of (bio)chemical species in the vapor phase. However, current fabrication techniques suffer greatly from sensor-to-sensor variability, limiting their reproducible and reliable application in real-world settings. We demonstrate a novel, facile, and ubiquitously applicable strategy for fabricating highly reliable and reproducible organothiol-functionalized gold nanoisland-based chemiresistors. The novel fabrication technique involves iterative in situ seeding, growth, and surface functionalization of gold nanoislands on an interdigitated electrode, which in turn generates a multi-layered densely packed continuous gold nanoisland film. The chemiresistors fabricated using the proposed strategy exhibited high sensor-to-sensor reproducibility owing to the controlled iterative seeding and growth-based fabrication technique, long-term stability, and specificity for detection and identification of a wide variety of volatile organic compounds. Upon exposure to a specific odor, the chemiresistor ensemble comprised nine different chemical functionalities and produced a unique and discernable odor fingerprint that is reproducible for at least up to 90 days. Integrating these odor fingerprints with a simple linear classifier was found to be sufficient for discriminating between all six odors used in this study. We believe that the fabrication strategy presented here, which is agnostic to chemical functionality, enables fabrication of highly reliable and reproducible sensing elements, and thereby an adaptable electronic nose for a wide variety of real-world gas sensing applications.


Assuntos
Materiais Biocompatíveis/química , Nariz Eletrônico , Ouro/química , Nanopartículas Metálicas/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...