Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(5): 1123-1154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369020

RESUMO

Interest in minitablets (MTs) has grown exponentially over the last 20 years and especially the last decade, as evidenced by the number of publications cited in Scopus and PubMed. MTs offer significant opportunities for personalized medicine, dose titration and flexible dosing, taste masking, and customizing drug delivery systems. Advances in specialized MT tooling, manufacturing, and characterization instrumentation have overcome many of the earlier development issues. Breakthrough MT swallowability, acceptability, and palatability research have challenged the long-standing idea that only liquids are acceptable dosage forms for infants and young children. MTs have been shown to be a highly acceptable dosage form for infants, small children, and geriatric patients who have difficulty swallowing. This review discusses the current state of MT applications, acceptability in pediatric and geriatric populations, medication adherence, manufacturing processes such as tableting and coating, running powder and tablet characterization, packaging and MT dispensing, and regulatory considerations.


Assuntos
Sistemas de Liberação de Medicamentos , Embalagem de Medicamentos , Lactente , Humanos , Criança , Pré-Escolar , Idoso , Administração Oral , Comprimidos , Medicina de Precisão
2.
Mol Pharm ; 17(1): 21-31, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31756102

RESUMO

The 1:1 caffeine (CAF) and 3-nitrobenzoic acid (NBA) cocrystal (CAF:NBA) displays polymorphism. Each polymorph shares the same docking synthon that connects individual CAF and NBA molecules within the asymmetric unit; however, the extended intermolecular interactions are significantly different between the two polymorphic modifications. These alternative interaction topologies translate to distinct structural motifs, mechanical properties, and compaction performance. To assist our molecular interpretation of the structure-mechanics-performance relationships for these cocrystal polymorphs, we combine powder Brillouin light scattering (p-BLS) to determine the mechanical properties with energy frameworks calculations to identify potentially available slip systems that may facilitate plastic deformation. The previously reported Form 1 for CAF:NBA adopts a 2D-layered crystal structure with a conventional 3.4 Å layer-to-layer separation distance. For Form 2, a columnar structure of 1D-tapes is displayed with CAF:NBA dimers running parallel to the (110) crystallographic direction. Consistent with the layered crystal structure, the shear modulus for Form 1 is significantly reduced relative to Form 2, and moreover, our p-BLS spectra for Form 1 clearly display the presence of low-velocity shear modes, which support the expectation of a low-energy slip system available for facile plastic deformation. Our energy frameworks calculations confirm that Form 1 displays a favorable slip system for plastic deformation. Combining our experimental and computational data indicates that the structural organization in Form 1 of CAF:NBA improves the compressibility and plasticity of the material, and from our tabletability studies, each of these contributions confers superior tableting performance to that of Form 1. Overall, mechanical and energy framework data permit a clear interpretation of the functional performance of polymorphic solids. This could serve as a robust screening approach for early pharmaceutical solid form selection and development.


Assuntos
Cafeína/química , Nitrobenzoatos/química , Química Computacional , Cristalização , Luz , Ciência dos Materiais , Simulação de Acoplamento Molecular , Porosidade/efeitos da radiação , Pós/química , Espalhamento de Radiação , Relação Estrutura-Atividade , Comprimidos/química , Resistência à Tração/efeitos da radiação , Termodinâmica
3.
AAPS PharmSciTech ; 20(3): 109, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746575

RESUMO

Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.


Assuntos
Luz , Espalhamento de Radiação , Análise Espectral/métodos
4.
AAPS PharmSciTech ; 19(8): 3430-3439, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30280355

RESUMO

Describing the elastic deformation of single-crystal molecular solids under stress requires a comprehensive determination of the fourth-rank stiffness tensor (Cijkl). Single crystals are, however, rarely utilized in industrial applications, and thus averaging techniques (e.g., the Voigt or Reuss approach) are employed to reduce the Cijkl (or its inverse Sijkl) to polycrystalline aggregate mechanical moduli. With increasing elastic anisotropy, the Voigt and Reuss-averaged aggregate moduli can diverge dramatically and, provided that drug molecules almost exclusively crystallize into low-symmetry space groups, warrants a significant need for accurate aggregate mechanical moduli. This elasticity data, which currently is largely absent for pharmaceutical materials, is expected to aid understanding how materials respond to direct compression and tablet formation. Powder Brillouin light scattering (p-BLS) has recently demonstrated facile access to porosity-independent, aggregate mechanical moduli. In this study, we extend our previous p-BLS model for obtaining mechanical properties and validate our approach against a broad library of molecular solids with diverse intermolecular interaction topologies and with previously determined Cijkl which permits benchmarking our results. Our Young's and shear moduli determined with p-BLS strongly correlate, with limited bias (i.e., a near 1:1 relation), with the Voigt-averaged Young's and shear moduli determined using the Cijkl. Through follow-on tabletability studies, we introduce initial classifications of tabletability behavior based on the results of our p-BLS studies and the apparent elastic anisotropy. With further development, this approach represents a robust and novel method to potentially identify materials for optimum tabletability at early developmental stages.


Assuntos
Difusão Dinâmica da Luz/métodos , Elasticidade , Pós/química , Comprimidos/química , Cristalização , Porosidade , Pressão , Reprodutibilidade dos Testes , Estresse Mecânico
5.
J Pharm Sci ; 107(10): 2635-2642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909027

RESUMO

Dipalmitoylphosphatidylcholine (DPPC) demonstrated complex differential scanning calorimetry (DSC) thermal behavior. Transitions below 100°C showed variability in their thermotropic reversibility. An experimental design employing a DSC heat-cool-heat-cool-heat cycle and modulated DSC were used to gain insight into the DPPC's complex thermal nature. An annealing strategy was developed to reduce DPPC's thermotropic variability, moisture uptake rate, and rate variability. Samples annealed at 110°C for 5 min provided a reproducible, thermally reversible material. The annealed material also exhibited an 8-fold decrease in moisture sorption rate and a statistically significant (p = 0.0233) 100-fold decrease in water sorption rate variability compared to DPPC "as is." An optimized validated stability-indicating high performance liquid chromatography with evaporative light scattering detection method was developed and showed no change in DPPC chemical stability under the annealing treatment conditions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria/métodos , Cromatografia Líquida de Alta Pressão/métodos , Temperatura Alta , Temperatura , Termodinâmica
6.
Mol Pharm ; 13(11): 3794-3806, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27723351

RESUMO

The tableting performance for p-aminobenzoic acid (PABA) and a series of its benzoate esters with increasing alkyl chain length (methyl-, ethyl-, and n-butyl) was determined over a broad range of compaction pressures. The crystalline structure of methyl benzoate (Me-PABA) exhibits no slip systems and does not form viable compacts under any compaction pressure. The ethyl (Et-PABA) and n-butyl (Bu-PABA) esters each have a similar, corrugated-layer structure that displays a prominent slip plane and improves material plasticity at low compaction pressure. The compact tensile strength for Et-PABA is superior to that for Bu-PABA; however, neither material achieved a tensile strength greater than 2 MPa over the compression range studied. Complementary studies with powder Brillouin light scattering (BLS) show the maxima of the shear wave, acoustic frequency distribution red shift in an order consistent with both the observed tabletability and attachment energy calculations. Moreover, zero-porosity aggregate elastic moduli are determined for each material using the average acoustic frequency obtained from specific characteristics of the powder BLS spectra. The Young's moduli for Et- and Bu-PABA is significantly reduced relative to PABA and Me-PABA, and this reduction is further evident in tablet compressibility plots. PABA, however, is distinct with high elastic isotropy as interpreted from the narrow and well-defined powder BLS frequency distributions for both the shear and compressional acoustic modes. The acoustic isotropy is consistent with the quasi-isotropic distribution of hydrogen bonding for PABA. At low compaction pressure, PABA tablets display the lowest tensile strength of the series; however, above a compaction pressure of ca. 70 MPa PABA tablet tensile strength continues to increase while that for Et- and Bu-PABA plateaus. PABA displays lower plasticity relative to either ester, and this is consistent with its crystalline structure and high yield pressure determined from in-die Heckel analysis. Overall the complementary approach of using both structural and the acoustic inputs uniquely provided from powder BLS is anticipated to expand our comprehension of the structure-mechanics relationship and its role in tableting performance.


Assuntos
Ácido 4-Aminobenzoico/química , Benzoatos/química , Ésteres/química , Estrutura Molecular , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...