Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 336-345, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298779

RESUMO

Background: Millions of sepsis survivors annually face neuropsychiatric sequelae of their illness. Corticosteroids are frequently administered for sepsis, and their use improves neuropsychiatric outcomes, but the mechanisms are unknown. In light of prior work that has shown persistent inflammation in sepsis survivors, we hypothesized that short-term corticosteroid treatment during illness would reverse the long-term impact of sepsis on inflammatory gene expression in the hippocampus and rescue associated changes to affective behaviors. Methods: Male and female mice underwent cecal ligation and puncture or a sham surgery to induce acute infection and were treated for 5 days with corticosterone or vehicle. Starting 2 weeks after the surgery, we performed functional phenotyping in the survivor mice followed by hippocampal RNA sequencing to identify underlying mechanisms. Results: Long-term cecal ligation and puncture survivors exhibited anxiety-like behavior, increased central hypothalamic-pituitary-adrenal axis activity, and persistent systemic and neuroinflammation. Corticosterone treatment during illness did not reverse anxiety-like behavior or inflammation in survivors. Instead, corticosterone treatment impaired object memory and increased active coping behavior in females. History of corticosterone treatment influenced the expression of >10% of detectable transcripts in the dorsal and ventral hippocampus, including a coordinated downregulation of activity-dependent genes. Conclusions: Corticosterone treatment during sepsis impaired memory formation in survivors and caused a lasting decrease in hippocampal neural activity, which could underlie its effect on memory. Future studies should focus on how this lasting effect of corticosteroid treatment on hippocampal activity and memory translates into improved neuropsychiatric outcomes in human sepsis survivors.

2.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556193

RESUMO

BACKGROUND: As critical care practice evolves, the sepsis survivor population continues to expand, often with lingering inflammation in many organs, including the liver. Given the concurrently increasing population of patients with NAFLD, in this study, we aimed to understand the long-term effect of sepsis on pre-existing NAFLD and hyperglycemia. METHODS: Male mice were randomized to a high-fat diet or a control diet (CD). After 24 weeks on diet, mice were inoculated with Klebsiella pneumoniae (Kpa). Serial glucose tolerance tests, and insulin and pyruvate challenge tests were performed 1 week before infection and at 2 and 6 weeks after infection. Whole tissue RNA sequencing and histological evaluation of the liver were performed. To test whether persistent inflammation could be reproduced in other abnormal liver environments, mice were also challenged with Kpa after exposure to a methionine-choline-deficient high-fat diet. Finally, a retrospective cohort of 65,139 patients was analyzed to evaluate whether obesity was associated with liver injury after sepsis. RESULTS: After Kpa inoculation, high-fat diet mice had normalized fasting blood glucose without a change in insulin sensitivity but with a notable decrease in pyruvate utilization. Liver examination revealed focal macrophage collections and a unique inflammatory gene signature on RNA analysis. In the clinical cohort, preobesity, and class 1 and class 2 obesity were associated with increased odds of elevated aminotransferase levels 1-2 years after sepsis. CONCLUSIONS: The combination of diet-induced obesity and pneumosepsis survival in a murine model resulted in unique changes in gluconeogenesis and liver inflammation, consistent with the progression of benign steatosis to steatohepatitis. In a cohort study, obese patients had an increased risk of elevated aminotransferase levels 1-2 years following sepsis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Inflamação , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/metabolismo , Estudos Retrospectivos , Transaminases
3.
Biosens Bioelectron ; 237: 115536, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473549

RESUMO

The search for reliable protein biomarker candidates is critical for early disease detection and treatment. However, current immunoassay technologies are failing to meet increasing demands for sensitivity and multiplexing. Here, the authors have created a highly sensitive protein microarray using the principle of single-molecule counting for signal amplification, capable of simultaneously detecting a panel of cancer biomarkers at sub-pg/mL levels. To enable this amplification strategy, the authors introduce a novel method of protein patterning using photolithography to subdivide addressable arrays of capture antibody spots into hundreds of thousands of individual microwells. This allows for the total sensor area to be miniaturized, increasing the total possible multiplex capacity. With the immunoassay realized on a standard 75x25 mm form factor glass substrate, sample volume consumption is minimized to <10 µL, making the technology highly efficient and cost-effective. Additionally, the authors demonstrate the power of their technology by measuring six secretory factors related to glioma tumor progression in a cohort of mice. This highly sensitive, sample-sparing multiplex immunoassay paves the way for researchers to track changes in protein profiles over time, leading to earlier disease detection and discovery of more effective treatment using animal models.


Assuntos
Técnicas Biossensoriais , Animais , Camundongos , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Proteínas , Biomarcadores Tumorais
4.
Biosens Bioelectron ; 224: 115030, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603283

RESUMO

Organ-on-a-chip platforms have potential to offer more cost-effective, ethical, and human-resembling models than animal models for disease study and drug discovery. Particularly, the Blood-Brain-Barrier-on-a-chip (BBB-oC) has emerged as a promising tool to investigate several neurological disorders since it promises to provide a model of the multifunctional tissue working as an important node to control pathogen entry, drug delivery and neuroinflammation. A comprehensive understanding of the multiple physiological functions of the tissue model requires biosensors detecting several tissue-secreted substances in a BBB-oC system. However, current sensor-integrated BBB-oC platforms are only available for tissue membrane integrity characterization based on permeability measurement. Protein secretory pathways are closely associated with the tissue's various diseased conditions. At present, no biosensor-integrated BBB-oC platform exists that permits in situ tissue protein secretion analysis over time, which prohibits researchers from fully understanding the time-evolving pathology of a tissue barrier. Herein, the authors present a platform named "Digital Tissue-BArrier-CytoKine-counting-on-a-chip (DigiTACK)," which integrates digital immunosensors into a tissue chip system and demonstrates on-chip multiplexed, ultrasensitive, longitudinal cytokine secretion profiling of cultured brain endothelial barrier tissues. The integrated digital sensors utilize a novel beadless microwell format to perform an ultrafast "digital fingerprinting" of the analytes while achieving a low limit of detection (LoD) around 100-500 fg/mL for mouse MCP1 (CCL2), IL-6 and KC (CXCL1). The DigiTACK platform is extensively applicable to profile temporal cytokine secretion of other barrier-related organ-on-a-chip systems and can provide new insight into the secretory dynamics of the BBB by sequentially controlled experiments.


Assuntos
Técnicas Biossensoriais , Humanos , Animais , Camundongos , Imunoensaio , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Citocinas , Dispositivos Lab-On-A-Chip
5.
Respir Med Case Rep ; 40: 101755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353064

RESUMO

There is a growing population of patients who require chronic noninvasive ventilation. While these patients often have no parenchymal lung disease, the use of positive pressure ventilation itself predisposes to both initial and recurrent pneumothoraces. Furthermore, generally accepted pneumothorax management strategies, such as removing a chest tube after liberation from positive pressure ventilation, are not possible in this population. Despite this, there is a lack of clear guidance on management of pneumothorax in the chronically ventilated patient. In this case series, we discuss the management of pneumothoraces in patients requiring chronic noninvasive mechanical ventilation in our Assisted Ventilation Clinic (AVC). Our experience suggests a potential role of definitive treatment of the initial pneumothorax to prevent reoccurrence.

6.
Adv Healthc Mater ; 11(18): e2200804, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899801

RESUMO

Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow for customized design. To address these unmet needs, an extension of the µSiM (microdevice featuring a silicon-nitride membrane) platform is introduced. The modular µSiM (m-µSiM) uses mass-produced components to enable rapid assembly and reconfiguration by laboratories without knowledge of microfabrication. The utility of the m-µSiM is demonstrated by establishing an hiPSC-derived blood-brain barrier (BBB) in bioengineering and nonengineering, brain barriers focused laboratories. In situ and sampling-based assays of small molecule diffusion are developed and validated as a measure of barrier function. BBB properties show excellent interlaboratory agreement and match expectations from literature, validating the m-µSiM as a platform for barrier models and demonstrating successful dissemination of components and protocols. The ability to quickly reconfigure the m-µSiM for coculture and immune cell transmigration studies through addition of accessories and/or quick exchange of components is then demonstrated. Because the development of modified components and accessories is easily achieved, custom designs of the m-µSiM shall be accessible to any laboratory desiring a barrier-style tissue chip platform.


Assuntos
Células-Tronco Pluripotentes Induzidas , Silício , Animais , Transporte Biológico , Barreira Hematoencefálica , Técnicas de Cocultura
7.
ACS Nano ; 15(11): 18023-18036, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34714639

RESUMO

Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 µL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.


Assuntos
COVID-19 , Microfluídica , Humanos , Síndrome da Liberação de Citocina/diagnóstico , COVID-19/diagnóstico , Imunoensaio/métodos , Citocinas/análise , Aprendizado de Máquina
8.
Small ; 17(31): e2101743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170616

RESUMO

Integrated microfluidic cellular phenotyping platforms provide a promising means of studying a variety of inflammatory diseases mediated by cell-secreted cytokines. However, immunosensors integrated in previous microfluidic platforms lack the sensitivity to detect small signals in the cellular secretion of proinflammatory cytokines with high precision. This limitation prohibits researchers from studying cells secreting cytokines at low abundance or existing at a small population. Herein, the authors present an integrated platform named the "digital Phenoplate (dPP)," which integrates digital immunosensors into a microfluidic chip with on-chip cell assay chambers, and demonstrates ultrasensitive cellular cytokine secretory profile measurement. The integrated sensors yield a limit of detection as small as 0.25 pg mL-1 for mouse tumor necrosis factor alpha (TNF-α). Each on-chip cell assay chamber confines cells whose population ranges from ≈20 to 600 in arrayed single-cell trapping microwells. Together, these microfluidic features of the dPP simultaneously permit precise counting and image-based cytometry of individual cells while performing parallel measurements of TNF-α released from rare cells under multiple stimulant conditions for multiple samples. The dPP platform is broadly applicable to the characterization of cellular phenotypes demanding high precision and high throughput.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Animais , Citocinas , Imunoensaio , Camundongos , Microfluídica , Fator de Necrose Tumoral alfa
9.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L451-L465, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161747

RESUMO

Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.


Assuntos
Lipopolissacarídeos/toxicidade , Lesão Pulmonar/imunologia , Sepse/imunologia , Animais , Calgranulina A/imunologia , Calgranulina B/imunologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Camundongos , Monócitos/imunologia , Monócitos/patologia , Sepse/induzido quimicamente , Sepse/patologia , Fator de Necrose Tumoral alfa/imunologia
10.
Biosens Bioelectron ; 180: 113088, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647790

RESUMO

Serial measurement of a large panel of protein biomarkers near the bedside could provide a promising pathway to transform the critical care of acutely ill patients. However, attaining the combination of high sensitivity and multiplexity with a short assay turnaround poses a formidable technological challenge. Here, the authors develop a rapid, accurate, and highly multiplexed microfluidic digital immunoassay by incorporating machine learning-based autonomous image analysis. The assay has achieved 12-plexed biomarker detection in sample volume <15 µL at concentrations < 5 pg/mL while only requiring a 5-min assay incubation, allowing for all processes from sampling to result to be completed within 40 min. The assay procedure applies both a spatial-spectral microfluidic encoding scheme and an image data analysis algorithm based on machine learning with a convolutional neural network (CNN) for pre-equilibrated single-molecule protein digital counting. This unique approach remarkably reduces errors facing the high-capacity multiplexing of digital immunoassay at low protein concentrations. Longitudinal data obtained for a panel of 12 serum cytokines in human patients receiving chimeric antigen receptor-T (CAR-T) cell therapy reveals the powerful biomarker profiling capability. The assay could also be deployed for near-real-time immune status monitoring of critically ill COVID-19 patients developing cytokine storm syndrome.


Assuntos
COVID-19/imunologia , Citocinas/análise , Processamento de Imagem Assistida por Computador/métodos , Imunoensaio/métodos , Aprendizado de Máquina , Análise em Microsséries/métodos , Técnicas Analíticas Microfluídicas/métodos , SARS-CoV-2 , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva , Redes Neurais de Computação
11.
Lab Chip ; 21(2): 331-343, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33211045

RESUMO

Despite widespread concern regarding cytokine storms leading to severe morbidity in COVID-19, rapid cytokine assays are not routinely available for monitoring critically ill patients. We report the clinical application of a digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit (ICU) at the University of Michigan Hospital. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing/mixing module that can be operated inside a biosafety cabinet to minimize the exposure of the technician to the virus infection and (ii) a 12-12-15 inch compact fluorescence optical scanner for the potential near-bedside readout. The platform enabled daily cytokine analysis in clinical practice with high sensitivity (<0.4 pg mL-1), inter-assay repeatability (∼10% CV), and rapid operation providing feedback on the progress of therapy within 4 hours. This test allowed us to perform serial monitoring of two critically ill patients with respiratory failure and to support immunomodulatory therapy using the selective cytopheretic device (SCD). We also observed clear interleukin-6 (IL-6) elevations after receiving tocilizumab (IL-6 inhibitor) while significant cytokine profile variability exists across all critically ill COVID-19 patients and to discover a weak correlation between IL-6 to clinical biomarkers, such as ferritin and C-reactive protein (CRP). Our data revealed large subject-to-subject variability in patients' response to COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , Tecnologia Digital/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Monitorização Fisiológica/métodos , Análise Serial de Proteínas/métodos , Algoritmos , Biomarcadores/sangue , Proteína C-Reativa/análise , COVID-19/sangue , Estado Terminal , Síndrome da Liberação de Citocina/imunologia , Desenho de Equipamento , Ferritinas/análise , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Limite de Detecção , Monitorização Fisiológica/instrumentação , SARS-CoV-2 , Fator de Necrose Tumoral alfa/sangue
12.
Blood ; 137(12): 1591-1602, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33275650

RESUMO

Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term "pre-equilibrium digital enzyme-linked immunosorbent assay" (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub-picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment.


Assuntos
Citocinas/sangue , Doenças do Sistema Imunitário/sangue , Testes Imediatos , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Humanos
13.
Endocrinology ; 161(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880654

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has forced us to consider the physiologic role of obesity in the response to infectious disease. There are significant disparities in morbidity and mortality by sex, weight, and diabetes status. Numerous endocrine changes might drive these varied responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including hormone and immune mediators, hyperglycemia, leukocyte responses, cytokine secretion, and tissue dysfunction. Studies of patients with severe COVID-19 disease have revealed the importance of innate immune responses in driving immunopathology and tissue injury. In this review we will describe the impact of the metabolically induced inflammation (meta-inflammation) that characterizes obesity on innate immunity. We consider that obesity-driven dysregulation of innate immune responses may drive organ injury in the development of severe COVID-19 and impair viral clearance.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Inflamação/imunologia , Obesidade/imunologia , Pneumonia Viral/imunologia , Betacoronavirus/fisiologia , Peso Corporal/imunologia , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Inflamação/metabolismo , Inflamação/virologia , Obesidade/metabolismo , Obesidade/virologia , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença
14.
medRxiv ; 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32587979

RESUMO

Despite widespread concern for cytokine storms leading to severe morbidity in COVID-19, rapid cytokine assays are not routinely available for monitoring critically ill patients. We report the clinical application of a machine learning-based digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit (ICU) at the University of Michigan Hospital. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing/mixing module that can be operated inside a biosafety cabinet to minimize the exposure of technician to the virus infection and (ii) a 12-12-15 inch compact fluorescence optical scanner for the potential near-bedside readout. The platform enabled daily cytokine analysis in clinical practice with high sensitivity (<0.4pg/mL), inter-assay repeatability (~10% CV), and near-real-time operation with a 10 min assay incubation. A cytokine profiling test with the platform allowed us to observe clear interleukin-6 (IL-6) elevations after receiving tocilizumab (IL-6 inhibitor) while significant cytokine profile variability exists across all critically ill COVID-19 patients and to discover a weak correlation between IL-6 to clinical biomarkers, such as Ferritin and CRP. Our data revealed large subject-to-subject variability in a patient's response to anti-inflammatory treatment for COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays.

15.
Psychoneuroendocrinology ; 117: 104679, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353815

RESUMO

Severe acute stressors are known to trigger mood disorders in humans. Sepsis represents one such stressor, and survivors often suffer long term from psychiatric morbidity. We hypothesized that sepsis leads to lasting changes in neural circuits involved in stress integration, altering affective behavior and the stress response. To investigate this hypothesis, sepsis was induced in male C57Bl/6 mice using cecal ligation and puncture (CLP), and control mice underwent sham surgery. Mice recovered from acute illness within 2 weeks, after which they exhibited increased avoidance behavior and behavioral despair compared with sham, with behavioral changes observed more than 5 weeks after recovery. Sepsis survivors also showed evidence of enhanced hypothalamic-pituitary-adrenal (HPA) axis activity, with increased corticosterone after a novel stressor and increased adrenal weight. In the brain, sepsis survivor mice showed decreased stress-induced cfos mRNA and increased glucocorticoid receptor immunoreactivity specifically in the ventral hippocampus, a brain region known to coordinate emotional behavior and HPA axis activity. We conclude that murine sepsis survivors exhibit a behavioral neuroendocrine syndrome of negative affective behavior and HPA axis hyperactivity, which could be explained by ventral hippocampal dysfunction. These findings could contribute to our understanding of the human post-intensive care syndrome.


Assuntos
Ansiedade/fisiopatologia , Corticosterona/metabolismo , Estado Terminal , Depressão/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sepse/complicações , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Ansiedade/etiologia , Comportamento Animal/fisiologia , Depressão/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estresse Psicológico/complicações , Estresse Psicológico/etiologia
17.
Shock ; 54(1): 78-86, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31415473

RESUMO

Pneumonia is the leading cause of sepsis and septic shock. Patients who survive pneumonia are vulnerable to long-term complications including increased risk of neurocognitive dysfunction. This study investigated the immune response and long-term complications of a non-surgical mouse model of Klebsiella pneumoniae pneumosepsis with antibiotic treatment. Pneumosepsis resulted in acutely enhanced expression of inflammatory cytokines, chemokines, and damage-associated molecular patterns in the brain and spleen. Despite resolution of infection, murine pneumosepsis survivors demonstrated a deficit in exploratory locomotor behavior at 2 weeks. This was associated with brain-specific persistent inflammatory gene expression and infiltrating myeloid cells in the brain. The brain inflammatory response was also primed in response to secondary challenge with lipopolysaccharide. The findings of this study demonstrate behavioral and inflammatory outcomes that parallel observations in other models of sepsis, but that have not previously been described in antibiotic-treated pneumonia models, highlighting a common pathway to the development of chronic brain dysfunction in sepsis survival.


Assuntos
Encéfalo/patologia , Pneumonia Bacteriana/mortalidade , Sepse/mortalidade , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/patologia , Klebsiella pneumoniae , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Teste de Campo Aberto , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Sepse/imunologia , Sepse/patologia
18.
J Clin Invest ; 129(4): 1527-1529, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30882365

RESUMO

Survivors of sepsis and other forms of critical illness frequently experience significant and disabling cognitive and affective disorders. Inflammation, ischemia, and glial cell dysfunction contribute to this persistent brain injury. In this issue of the JCI, Hippensteel et al. show that endothelial injury in animal models of sepsis or endotoxemia leads to shedding of heparan fragments from the endothelial glycocalyx. These fragments directly sequester brain-derived neurotrophic factor and impair hippocampal long-term potentiation, an electrophysiologic correlate of memory. The authors further explore the specific characteristics of heparan fragments that bind neurotrophins and the presence of these fragments in the circulation of patients who survive sepsis. This study highlights an important mechanism by which vascular injury can impair brain function.


Assuntos
Disfunção Cognitiva , Venenos , Sepse , Animais , Glicocálix , Heparitina Sulfato , Humanos
19.
Front Immunol ; 9: 2446, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459764

RESUMO

Sepsis is a leading cause of death worldwide. After initial trials modulating the hyperinflammatory phase of sepsis failed, generations of researchers have focused on evaluating hypo-inflammatory immune phenotypes. The main goal has been to develop prognostic biomarkers and therapies to reduce organ dysfunction, nosocomial infection, and death. The depressed host defense in sepsis has been characterized by broad cellular reprogramming including lymphocyte exhaustion, apoptosis, and depressed cytokine responses. Despite major advances in this field, our understanding of the dynamics of the septic host response and the balance of inflammatory and anti-inflammatory cellular programs remains limited. This review aims to summarize the epidemiology of nosocomial infections and characteristic immune responses associated with sepsis, as well as immunostimulatory therapies currently under clinical investigation.


Assuntos
Infecção Hospitalar/imunologia , Linfócitos/imunologia , Sepse/imunologia , Animais , Reprogramação Celular , Infecção Hospitalar/epidemiologia , Citocinas/metabolismo , Humanos , Tolerância Imunológica , Imunização , Sepse/epidemiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...