Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 164(12)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944134

RESUMO

Functional human brown and white adipose tissue (BAT and WAT) are vital for thermoregulation and nutritional homeostasis, while obesity and other stressors lead, respectively, to cold intolerance and metabolic disease. Understanding BAT and WAT physiology and dysfunction necessitates clinical trials complemented by mechanistic experiments at the cellular level. These require standardized in vitro models, currently lacking, that establish references for gene expression and function. We generated and characterized a pair of immortalized, clonal human brown (hBA) and white (hWA) preadipocytes derived from the perirenal and subcutaneous depots, respectively, of a 40-year-old male individual. Cells were immortalized with hTERT and confirmed to be of a mesenchymal, nonhematopoietic lineage based on fluorescence-activated cell sorting and DNA barcoding. Functional assessments showed that the hWA and hBA phenocopied primary adipocytes in terms of adrenergic signaling, lipolysis, and thermogenesis. Compared to hWA, hBA were metabolically distinct, with higher rates of glucose uptake and lactate metabolism, and greater basal, maximal, and nonmitochondrial respiration, providing a mechanistic explanation for the association between obesity and BAT dysfunction. The hBA also responded to the stress of maximal respiration by using both endogenous and exogenous fatty acids. In contrast to certain mouse models, hBA adrenergic thermogenesis was mediated by several mechanisms, not principally via uncoupling protein 1 (UCP1). Transcriptomics via RNA-seq were consistent with the functional studies and established a molecular signature for each cell type before and after differentiation. These standardized cells are anticipated to become a common resource for future physiological, pharmacological, and genetic studies of human adipocytes.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Masculino , Camundongos , Animais , Humanos , Adulto , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Adrenérgicos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530080

RESUMO

Teleost fish of the genus Danio are excellent models to study the genetic and cellular bases of pigment pattern variation in vertebrates. The two sister species Danio rerio and Danio aesculapii show divergent patterns of horizontal stripes and vertical bars that are partly caused by the divergence of the potassium channel gene kcnj13. Here, we show that kcnj13 is required only in melanophores for interactions with xanthophores and iridophores, which cause location-specific pigment cell shapes and thereby influence colour pattern and contrast in D. rerio. Cis-regulatory rather than protein coding changes underlie kcnj13 divergence between the two Danio species. Our results suggest that homotypic and heterotypic interactions between the pigment cells and their shapes diverged between species by quantitative changes in kcnj13 expression during pigment pattern diversification.


Assuntos
Pigmentação , Peixe-Zebra , Animais , Forma Celular , Melanóforos/fisiologia , Pigmentação/genética , Pele , Peixe-Zebra/genética
3.
Oncogene ; 41(5): 718-731, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845377

RESUMO

MicroRNAs (miRNAs) may modulate more than 60% of human coding genes and act as negative regulators, whereas long noncoding RNAs (lncRNAs) regulate gene expression on multiple levels by interacting with chromatin, functional proteins, and RNAs such as mRNAs and microRNAs. However, the crosstalk between HOTTIP lncRNA and miRNAs in leukemogenesis remains elusive. Using combined integrated analyses of global miRNA expression profiling and state-of-the-art genomic analyses of chromatin such as ChIRP-seq (HOTTIP binding in genomewide), ChIP-seq, and ATAC-seq, we found that some miRNA genes are directly controlled by HOTTIP. Specifically, the HOX cluster miRNAs (miR-196a, miR-196b, miR-10a, and miR-10b), located cis and trans, were most dramatically regulated and significantly decreased in HOTTIP-/- AML cells. HOTTIP bound to the miR-196b promoter and HOTTIP deletion reduced chromatin accessibility and enrichment of active histone modifications at HOX cluster-associated miRNAs in AML cells, whereas reactivation of HOTTIP restored miR gene expression and chromatin accessibility in the CTCF-boundary-attenuated AML cells. Inactivation of HOTTIP or miR-196b promotes apoptosis by altering the chromatin signature at the FAS promoter and increasing FAS expression. Transplantation of miR-196b knockdown MOLM13 cells in NSG mice increased overall survival of mice compared to wild-type cells transplanted into mice. Thus, HOTTIP remodels the chromatin architecture around miRNAs to promote their transcription and consequently represses tumor suppressors and promotes leukemogenesis.


Assuntos
RNA Longo não Codificante
4.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643097

RESUMO

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , MicroRNAs/genética , Transcriptoma , Animais , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Biologia Computacional , Cães , Feminino , Citometria de Fluxo , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Organoides , RNA-Seq , Análise de Célula Única
5.
Dev Biol ; 464(2): 176-187, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32504627

RESUMO

Chromatin-remodeling complexes play critical roles in establishing gene expression patterns in response to developmental signals. How these epigenetic regulators determine the fate of progenitor cells during development of specific organs is not well understood. We found that genetic deletion of Brg1 (Smarca4), the core enzymatic protein in SWI/SNF, in nephron progenitor cells leads to severe renal hypoplasia. Nephron progenitor cells were depleted in Six2-Cre, Brg1flx/flx mice due to reduced cell proliferation. This defect in self-renewal, together with impaired differentiation resulted in a profound nephron deficit in Brg1 mutant kidneys. Sall1, a transcription factor that is required for expansion and maintenance of nephron progenitors, associates with SWI/SNF. Brg1 and Sall1 bind promoters of many progenitor cell genes and regulate expression of key targets that promote their proliferation.


Assuntos
Diferenciação Celular , Proliferação de Células , DNA Helicases/metabolismo , Néfrons/embriologia , Proteínas Nucleares/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Chlorocebus aethiops , DNA Helicases/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Néfrons/citologia , Proteínas Nucleares/genética , Células-Tronco/citologia , Fatores de Transcrição/genética
6.
Cell Mol Gastroenterol Hepatol ; 9(3): 447-464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31756561

RESUMO

BACKGROUND & AIMS: The enteroendocrine cell (EEC) lineage is important for intestinal homeostasis. It was recently shown that EEC progenitors contribute to intestinal epithelial growth and renewal, but the underlying mechanisms remain poorly understood. MicroRNAs are under-explored along the entire EEC lineage trajectory, and comparatively little is known about their contributions to intestinal homeostasis. METHODS: We leverage unbiased sequencing and eight different mouse models and sorting methods to identify microRNAs enriched along the EEC lineage trajectory. We further characterize the functional role of EEC progenitor-enriched miRNA, miR-7, by in vivo dietary study as well as ex vivo enteroid in mice. RESULTS: First, we demonstrate that miR-7 is highly enriched across the entire EEC lineage trajectory and is the most enriched miRNA in EEC progenitors relative to Lgr5+ intestinal stem cells. Next, we show in vivo that in EEC progenitors miR-7 is dramatically suppressed under dietary conditions that favor crypt division and suppress EEC abundance. We then demonstrate by functional assays in mouse enteroids that miR-7 exerts robust control of growth, as determined by budding (proxy for crypt division), EdU and PH3 staining, and likely regulates EEC abundance also. Finally, we show by single-cell RNA sequencing analysis that miR-7 regulates Xiap in progenitor/stem cells and we demonstrate in enteroids that the effects of miR-7 on mouse enteroid growth depend in part on Xiap and Egfr signaling. CONCLUSIONS: This study demonstrates for the first time that EEC progenitor cell-enriched miR-7 is altered by dietary perturbations and that it regulates growth in enteroids via intact Xiap and Egfr signaling.


Assuntos
Células Enteroendócrinas/fisiologia , Proteínas Inibidoras de Apoptose/genética , Mucosa Intestinal/fisiologia , MicroRNAs/metabolismo , Células-Tronco/fisiologia , Animais , Linhagem da Célula/genética , Proliferação de Células/genética , Células Cultivadas , Biologia Computacional , Receptores ErbB/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Proteínas Inibidoras de Apoptose/metabolismo , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Organoides , Cultura Primária de Células , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única
7.
Stem Cells Int ; 2017: 5604727, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904533

RESUMO

The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.

8.
Mol Cell Biol ; 36(15): 1990-2010, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185875

RESUMO

SWI/SNF (switching/sucrose nonfermenting)-dependent chromatin remodeling establishes coordinated gene expression programs during development, yet important functional details remain to be elucidated. We show that the Brg1 (Brahma-related gene 1; Smarca4) ATPase is globally expressed at high levels during postimplantation development and its conditional ablation, beginning at gastrulation, results in increased apoptosis, growth retardation, and, ultimately, embryonic death. Global gene expression analysis revealed that genes upregulated in Rosa26CreERT2; Brg1(flox/flox) embryos (here referred to as Brg1(d/d) embryos to describe embryos with deletion of the Brg1(flox/flox) alleles) negatively regulate cell cycle progression and cell growth. In addition, the p53 (Trp53) protein, which is virtually undetectable in early wild-type embryos, accumulated in the Brg1(d/d) embryos and activated the p53-dependent pathways. Using P19 cells, we show that Brg1 and CHD4 (chromodomain helicase DNA binding protein 4) coordinate to control target gene expression. Both proteins physically interact and show a substantial overlap of binding sites at chromatin-accessible regions adjacent to genes differentially expressed in the Brg1(d/d) embryos. Specifically, Brg1 deficiency results in reduced levels of the repressive histone H3 lysine K27 trimethylation (H3K27me3) histone mark and an increase in the amount of open chromatin at the regulatory region of the p53 and p21 (Cdkn1a) genes. These results provide insights into the mechanisms by which Brg1 functions, which is in part via the p53 program, to constrain gene expression and facilitate rapid embryonic growth.


Assuntos
Pontos de Checagem do Ciclo Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Desenvolvimento Embrionário , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
9.
Cent Nerv Syst Agents Med Chem ; 16(3): 240-248, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27121381

RESUMO

BACKGROUND: Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. OBJECTIVE: Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. METHOD: Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. RESULTS: Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. CONCLUSION: Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.


Assuntos
Anticonvulsivantes/síntese química , Anticonvulsivantes/toxicidade , Benzotiazóis/síntese química , Benzotiazóis/toxicidade , Tiazóis/síntese química , Tiazóis/toxicidade , Animais , Anticonvulsivantes/uso terapêutico , Masculino , Camundongos , Bases de Schiff/síntese química , Bases de Schiff/uso terapêutico , Bases de Schiff/toxicidade , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Testes de Toxicidade Aguda/métodos
10.
Development ; 140(4): 916-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362350

RESUMO

At the protochordate-vertebrate transition, a new predatory lifestyle and increased body size coincided with the appearance of a true head. Characteristic innovations of this head are a skull protecting and accommodating a centralized nervous system, a jaw for prey capture and gills as respiratory organs. The neural crest (NC) is a major ontogenetic source for the 'new head' of vertebrates and its contribution to the cranial skeleton has been intensively studied in different model organisms. However, the role of NC in the expansion of the respiratory surface of the gills has been neglected. Here, we use genetic lineage labeling to address the contribution of NC to specific head structures, in particular to the gills of adult zebrafish. We generated a sox10:ER(T2)-Cre line and labeled NC cells by inducing Cre/loxP recombination with tamoxifen at embryonic stages. In juvenile and adult fish, we identified numerous established NC derivatives and, in the cranium, we precisely defined the crest/mesoderm interface of the skull roof. We show the NC origin of the opercular bones and of multiple cell types contributing to the barbels, chemosensory organs located in the mouth region. In the gills, we observed labeled primary and secondary lamellae. Clonal analysis reveals that pillar cells, a craniate innovation that mechanically supports the filaments and forms gill-specific capillaries, have a NC origin. Our data point to a crucial role for the NC in enabling more efficient gas exchange, thus uncovering a novel, direct involvement of this embryonic tissue in the evolution of respiratory systems at the protochordate-vertebrate transition.


Assuntos
Evolução Biológica , Linhagem da Célula/fisiologia , Brânquias/citologia , Cabeça/embriologia , Crista Neural/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula/genética , Crioultramicrotomia , Primers do DNA/genética , Brânquias/embriologia , Imuno-Histoquímica , Integrases/genética , Microscopia Confocal , Fatores de Transcrição SOXE/genética , Tamoxifeno , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Stem Cells ; 30(5): 910-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367759

RESUMO

Embryonic stem cell (ESC) identity and self-renewal is maintained by extrinsic signaling pathways and intrinsic gene regulatory networks. Here, we show that three members of the Ccr4-Not complex, Cnot1, Cnot2, and Cnot3, play critical roles in maintaining mouse and human ESC identity as a protein complex and inhibit differentiation into the extraembryonic lineages. Enriched in the inner cell mass of blastocysts, these Cnot genes are highly expressed in ESC and downregulated during differentiation. In mouse ESCs, Cnot1, Cnot2, and Cnot3 are important for maintenance in both normal conditions and the 2i/LIF medium that supports the ground state pluripotency. Genetic analysis indicated that they do not act through known self-renewal pathways or core transcription factors. Instead, they repress the expression of early trophectoderm (TE) transcription factors such as Cdx2. Importantly, these Cnot genes are also necessary for the maintenance of human ESCs, and silencing them mainly lead to TE and primitive endoderm differentiation. Together, our results indicate that Cnot1, Cnot2, and Cnot3 represent a novel component of the core self-renewal and pluripotency circuitry conserved in mouse and human ESCs.


Assuntos
Células-Tronco Embrionárias/metabolismo , Inativação Gênica/fisiologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética
12.
Neural Dev ; 2: 20, 2007 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17958902

RESUMO

BACKGROUND: Odors are detected by sensory neurons that carry information to the olfactory lobe where they connect to projection neurons and local interneurons in glomeruli: anatomically well-characterized structures that collect, integrate and relay information to higher centers. Recent studies have revealed that the sensitivity of such networks can be modulated by wide-field feedback neurons. The connectivity and function of such feedback neurons are themselves subject to alteration by external cues, such as hormones, stress, or experience. Very little is known about how this class of central neurons changes its anatomical properties to perform functions in altered developmental contexts. A mechanistic understanding of how central neurons change their anatomy to meet new functional requirements will benefit greatly from the establishment of a model preparation where cellular and molecular changes can be examined in an identified central neuron. RESULTS: In this study, we examine a wide-field serotonergic neuron in the Drosophila olfactory pathway and map the dramatic changes that it undergoes from larva to adult. We show that expression of a dominant-negative form of the ecdysterone receptor prevents remodeling. We further use different transgenic constructs to silence neuronal activity and report defects in the morphology of the adult-specific dendritic trees. The branching of the presynaptic axonal arbors is regulated by mechanisms that affect axon growth and retrograde transport. The neuron develops its normal morphology in the absence of sensory input to the antennal lobe, or of the mushroom bodies. However, ablation of its presumptive postsynaptic partners, the projection neurons and/or local interneurons, affects the growth and branching of terminal arbors. CONCLUSION: Our studies establish a cellular system for studying remodeling of a central neuromodulatory feedback neuron and also identify key elements in this process. Understanding the morphogenesis of such neurons, which have been shown in other systems to modulate the sensitivity and directionality of response to odors, links anatomy to the development of olfactory behavior.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Condutos Olfatórios/crescimento & desenvolvimento , Células Receptoras Sensoriais/metabolismo , Serotonina/metabolismo , Animais , Diferenciação Celular/genética , Forma Celular/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Ecdisterona/metabolismo , Retroalimentação/fisiologia , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Citometria por Imagem , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Corpos Pedunculados/citologia , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/metabolismo , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Células Receptoras Sensoriais/citologia , Olfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...