Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 27(18): 5737-5744, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33350530

RESUMO

An anion-mediated preorganization approach was used to design and synthesize the benzimidazolium-based calix compound R1⋅2 ClO4 - . X-ray crystallography analysis revealed that the hydrogen-bonding interactions between the benzimidazolium cations and N,N-dimethylformamide (DMF) helped R1⋅2 ClO4 - encapsulate DMF molecule(s). A nanoreactor, with R1⋅2 ClO4 - and l-histidine (l-His) as the components, was fabricated by using a neutralization method. The nanoreactor could detoxify paraoxon in 30 min. l-His played a vital role in this process. Paraoxonase is a well-known enzyme used for pesticide degradation. The Ellman's reagent was used to determine the percentage inhibition of the acetylcholinesterase (AChE) activity in the presence of the nanoreactor. The results indicated that the nanoreactor inhibited AChE inhibition.


Assuntos
Acetilcolina , Arildialquilfosfatase , Acetilcolinesterase , Inibidores da Colinesterase , Histidina , Nanotecnologia
2.
Inorg Chem ; 58(15): 9773-9784, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31318533

RESUMO

In recent years, transition metal complexes have been developed for catalytical degradation of a phosphate ester bond, particularly in RNA and DNA; however, less consideration has been given for development of complexes for the degradation of a phosphorothioate bond, as they are the foremost used pesticides in the environment and are toxic to human beings. In this context, we have developed copper complexes of benzimidazolium based ligands for catalytical degradation of a series of organophosphates (parathion, paraoxon, methyl-parathion) at ambient conditions. The copper complexes (assigned as N1-N3) were characterized using single X-ray crystallography which revealed that all three complexes are mononuclear and distorted square planner in geometry. Further, the solution state studies of the prepared complexes were carried out using UV-visible absorption, fluorescence spectroscopy, and cyclic voltametry. The complexes N1 and N2 have benzimidazolium ionic liquid as base attached with two 2-mercapto-benzimidazole pods, whereas complex N3 contains a nonionic ligand. The synthesized copper complexes were evaluated for their catalytic activity for degradation of organophosphates. It is interesting that the complex containing the ionic ligand efficiently degrades phosphorothioate pesticides, whereas complex N3 was not found to be appropriate for degradation due to a weaker conversion rate. The organophosphate degradation studies were monitored by recording absorbance spectra of parathion in the presence of catalyst, i.e., copper complexes with respect to time. The parathion was hydrolyzed into para-nitrophenol and diethyl thiophosphate. Moreover, to analyze the inhibition activity of the pesticides toward acetylcholine esterase enzyme in the presence of prepared metal complexes, Ellman's assay was performed and revealed that, within 20 min, the inhibition of acetylcholine esterase enzyme decreases by up to 13%.


Assuntos
Acetilcolina/metabolismo , Esterases/metabolismo , Estruturas Metalorgânicas/química , Praguicidas/química , Praguicidas/toxicidade , Fosfatos/química , Acetilcolina/análise , Benzimidazóis/química , Catálise , Cobre/química , Cristalografia por Raios X , Esterases/análise , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Estrutura Molecular , Fosfatos/toxicidade
3.
Dalton Trans ; 47(16): 5595-5606, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29546906

RESUMO

The unregulated use of organophosphates (OPs) as pesticides and toxic chemical warfare agents demands their continuous monitoring from a human health perspective. This study describes a fluorescence turn-on sensing assay for the selective quantification of OPs in aqueous medium. Metal complexes of two different Biginelli derivatives were processed in water through a reprecipitation technique. The engineered self-assembly of the pyridyl-2-cobalt complex (L1·Co(II)) was employed to selectively detect malathion while the pyridyl-4-cobalt complex (L2·Co(II)) could estimate azamethiphos fluorimetrically up to a detection limit of 9.2 nM and 11 nM, respectively. Furthermore, the pesticide degradation ability of OPs was assessed using a 31P-NMR technique. This new paradigm expands the versatility of Biginelli derivatives as promising sensing platforms via metal complexation which may further be explored for estimation of analytes.

4.
Dalton Trans ; 46(3): 985-994, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009905

RESUMO

Two copper complexes C1 and C2 have been designed and developed for selective sensing of organophosphates. It is important to develop an efficient method for the detection of these agents for environmental analysis because the overuse of these agents in the environment causes harmful effects on living systems. Our attempts to utilize the copper complexes for the detection of organophosphates remained successful: the C1 complex has shown selective binding for the azamethiphos with a detection limit of 19 nM; while the C2 complex has not revealed any selectivity for any of the tested organophosphates. The results indicated that the coordination sphere of the C1 complex is proficiently engineered in such a way that it offers judicial binding sites for guest molecules.

5.
Inorg Chem ; 55(10): 4874-83, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27115348

RESUMO

The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.

6.
Dalton Trans ; 44(28): 12589-97, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26061254

RESUMO

A Schiff base based tripodal receptor was synthesized and complexed with a zinc metal ion (n17) using a very easy single step process. The resulting complex was fully characterized by CHN and single crystal XRD. The real time application of the complex in aqueous media was devised by preparing its organic nanoparticles (ONPs) and their sensor activity was tested with various anions by observing changes in the fluorescence profile of n17. It was observed that ONPs of n17 responded excellently for fluoride and sulfate, producing two different signals, with detection limits of 4.84 × 10(-12) M and 5.67 × 10(-9) M respectively, without having any interference from each other. The real time application of the sensor was also tested using various samples collected from various daily utility items and found to respond exceptionally well.

7.
Inorg Chem ; 53(19): 10731-42, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25226493

RESUMO

Six novel Ni(II) complexes, namely, [Ni2(HL(1))(OAc)2] (1), [Ni3L(1)2]·H2O·2CH3CN (2), [Ni2(L(2))(L(3))(CH3CN)] (3), [Ni2(L(2))2(H2O)2] (4), [Ni2(L(2))2(DMF)2]2·2H2O (5), and [Ni(HL(2))2]·H2O (6), were synthesized by reacting nitrophenol-based tripodal (H3L(1)) and dipodal (H2L(2)) Schiff base ligands with Ni(II) metal salts at ambient conditions. All the complexes were fully characterized with different spectroscopic techniques such as elemental analyses, IR, UV-vis spectroscopy, and electrospray ionization mass spectrometry. The solid-state structures of 2, 3, 5, and 6 were determined using single-crystal X-ray crystallography. The compounds 1, 3, 4, and 5 are dinuclear complexes where the two Ni(II) centers have octahedral geometry with bridging phenoxo groups. Compound 2 is a trinuclear complex with two different types of Ni(II) centers. In compound 3 one of the Ni(II) centers has a coordinated acetonitrile molecule, whereas in compound 4, a water molecule has occupied one coordination site of each Ni(II) center. In complex 5, the coordinated water of complex 4 was displaced by the dimethylformamide (DMF) during its crystallization. Complex 6 is mononuclear with two amine-bis(phenolate) ligands in scissorlike fashion around the Ni(II) metal center. The single crystals of 1 and 4 could not be obtained; however, from the spectroscopic data and physicochemical properties (electronic and redox properties) it was assumed that the structures of these complexes are quite similar to other analogues. DNA binding abilities and phosphatase-like activities of all characterized complexes were also investigated. The ligand denticity, coordinated anions/solvents (such as acetate, acetonitrile, water, and DMF), and cooperative action of two metal centers play a significant role in the phosphate ester bond cleavage of 2-hydroxypropyl-p-nitropenylphosphate by transesterification mechanism. Complex 3 exhibits highest activity among complexes 1-6 with 3.86 × 10(5) times greater rate enhancement than uncatalyzed reaction.


Assuntos
DNA/química , Níquel/química , Compostos Organometálicos/química , Monoéster Fosfórico Hidrolases/química , Animais , Ânions/química , Ânions/metabolismo , Sítios de Ligação , Bovinos , DNA/metabolismo , Cinética , Ligantes , Estrutura Molecular , Níquel/metabolismo , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Solventes/química , Solventes/metabolismo
8.
Dalton Trans ; 43(43): 16283-8, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25140610

RESUMO

An imidazolium-based ionic liquid containing a carboxylic acid group was synthesized and complexed with Cu(II). The resulting complex R1 was fully characterized using various techniques, including IR spectroscopy and X-ray crystallography. Binding studies of the complex R1 were performed with anions and biomolecules using cyclic voltammetry, which showed no change in its voltammogram upon the addition of various anions and most biomolecules. However, a shift in the reduction peak from +0.20 to -0.15 was observed upon the addition of guanine. This selective determination of guanine by R1 was extended by using R1 as an electrochemical sensor for guanine in various voltammetric techniques, including cyclic voltammetry, LSV and DPV. The proposed sensor showed excellent reproducibility and high selectivity and sensitivity towards guanine, with a linear range of 0-20 µM and a detection limit of 45 nM.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Técnicas Eletroquímicas , Guanina/análise , Líquidos Iônicos/química , Complexos de Coordenação/química , Cristalografia por Raios X , Conformação Molecular
9.
Org Biomol Chem ; 12(14): 2302-9, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589861

RESUMO

Two new tripodal receptors (1­2) have been synthesized and characterized by various spectroscopic techniques. The nano-aggregates of 1 and 2 (N1 and N2) have been prepared by a re-precipitation method in aqueous medium and have shown different photo-physical properties. Nano-aggregates of 1 (N1) can selectively recognize Hg(2+) in aqueous medium in the presence of other metal ions with enhancement in fluorescent intensity. The response was linearly proportional to the concentration of Hg(2+) in the range 0­10 µM with a detection limit of 2.4 nM. The mechanism of selective binding of Hg(2+) by N1 has also been supported by theoretical studies. To the best of our knowledge, this work represents the first report on substituted thiourea based nano-aggregates for nano-molar detection of mercury in aqueous medium.


Assuntos
Fluorometria , Mercúrio/análise , Nanopartículas/química , Água/química , 1-Naftilisotiocianato/análogos & derivados , 1-Naftilisotiocianato/síntese química , 1-Naftilisotiocianato/química , Íons/análise , Estrutura Molecular
10.
Artigo em Inglês | MEDLINE | ID: mdl-24291434

RESUMO

A new fluorescent receptor 1,1'-(4-methylbenzene-1,3-diyl)bis[3-(2-sulfanylphenyl)urea] (1) has been designed and synthesized. The receptor showed excellent selectivity for Fe(3+) in DMSO/H2O (8:2, v/v) solvent system over other commonly coexistent metal ions. The binding constant (Ka) of receptor with Fe(3+) was calculated to be 11,250 M(-1), 12,970 M(-1) and 12,970 M(-1) using Benesi-Hildebrand, Scatchard and Connor plot, respectively. The experimental results have been further supported by the detailed DFT calculations.


Assuntos
Ferro/análise , Técnicas de Sonda Molecular , Sondas Moleculares/química , Corantes Fluorescentes , Conformação Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
11.
Inorg Chem ; 52(24): 13830-2, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24299496

RESUMO

Biginelli-based molecules (1-3) have been synthesized and developed as a new class of fluorescent organic nanoparticle-based chemosensors. Chemosensor 2 has shown excellent selectivity and sensitivity for detection of Hg(2+) in an aqueous medium. It can detect Hg(2+) up to 1 nM, and the resultant 2Hg(2+) complex can detect Cl(-) ions (micromolar level) in an aqueous medium.

12.
J Coord Chem ; 63(17): 3016-3027, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21116471

RESUMO

A new complex salt of composition [Co(phen)(3)](3)(V(4)O(12))(2)Cl·27H(2)O (phen = 1,10-phenanthroline and [V(4)O(12)](4-) = tetrameric dodecaoxotetravanadate ion) was synthesized by reacting appropriate salts in aqueous medium. The complex salt has been characterized by elemental analyses, thermogravimetric analysis (TGA), cyclic voltammetry (CV), FT-IR and UV/Vis spectroscopies, solubility product and conductance measurements. Single crystal X-ray structure determination revealed ionic structure consisting of three complex cations, [Co(phen)(3)](3+), two [V(4)O(12)](4-) anions, one chloride and twenty seven lattice waters. Detailed structural and spectroscopic analyses of [Co(phen)(3)](3)(V(4)O(12))(2)Cl·27H(2)O show that the large anion is stabilized by the large cationic metal complex as there is preferred shape compatibility that leads to a large number of lattice stabilizing non-covalent interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...