Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cytokine ; 177: 156562, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430693

RESUMO

BACKGROUND: Dengue is a rapidly emerging pandemic-prone disease, whose manifestations range from asymptomatic infection to life-threatening complications like Dengue Hemorrhagic Fever and Dengue Shock Syndrome. This study investigates and compares the immune response in clinically defined cohorts of Dengue with and without warning signs, with the aim of identifying immunological correlates of clinical disease and potential markers of disease severity. METHODS: Blood samples, collected from study participants fulfilling the WHO definition of Dengue with and without warning signs and healthy volunteers, were analyzed using flow cell-based fluorometric methods for cytokines and chemokines. Gene expression analysis, using RT-PCR, was conducted on T helper cell subset-specific transcription factors and cytokines. Demographic details, virological markers, serotype distribution, and hematological parameters were also investigated in all the subjects. RESULTS: The 35 participants recruited in the study, included 11 healthy volunteers and 12 patients each fulfilling the WHO criteria of Dengue with and without warning signs. While the demographic characteristics and serotype distribution was similar in Dengue with and without warning signs cohorts of the disease, platelet counts and Aspartate Aminotransferase (AST) levels changed significantly between Dengue with and without warning signs patients. Plasma cytokine analysis showed up-regulation of IL-4, IL-10, IP-10, and MCP-1 in Dengue patients compared to healthy volunteers. Disease severity was associated with elevated levels of IL-10, IP-10, IL-4, MCP-1, and MIP-1α. IL-8 and MIP-1α were significantly up-regulated in Dengue with warning sign compared to Dengue without warning signs cases. Transcription factor analysis indicated increased expression of RORα, FoxP3, and GATA3 in Dengue patients. mRNA expression of TGFß and IL-4 was also elevated in Dengue patients. A positive correlation between mRNA expression of IL-4 and plasma IL-4 was observed. CONCLUSION: The study reveals a Th2-predominant immune response in all Dengue patients, regardless of disease severity, with overexpression of IL-8 and MIP-1α being observed in patients with warning signs.


Assuntos
Dengue , Interleucina-10 , Humanos , Quimiocina CXCL10 , Quimiocina CCL3 , Interleucina-4 , Interleucina-8 , Biomarcadores , Citocinas/metabolismo , Imunidade , RNA Mensageiro
2.
Front Cell Infect Microbiol ; 13: 1089374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139494

RESUMO

During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.


Assuntos
Fosfolipases Tipo C , Fatores de Virulência , Humanos , Fosfolipases Tipo C/metabolismo , Transdução de Sinais , Fosfatos de Inositol
3.
Front Cell Infect Microbiol ; 13: 1109449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816580

RESUMO

Streptococcus pneumoniae (pneumococcus) typically colonizes the human upper airway asymptomatically but upon reaching other sites of the host body can cause an array of diseases such as pneumonia, bacteremia, otitis media, and meningitis. Be it colonization or progression to disease state, pneumococcus faces multiple challenges posed by host immunity ranging from complement mediated killing to inflammation driven recruitment of bactericidal cells for the containment of the pathogen. Pneumococcus has evolved several mechanisms to evade the host inflicted immune attack. The major pneumococcal virulence factor, the polysaccharide capsule helps protect the bacteria from complement mediated opsonophagocytic killing. Another important group of pneumococcal proteins which help bacteria to establish and thrive in the host environment is surface associated glycosidases. These enzymes can hydrolyze host glycans on glycoproteins, glycolipids, and glycosaminoglycans and consequently help bacteria acquire carbohydrates for growth. Many of these glycosidases directly or indirectly facilitate bacterial adherence and are known to modulate the function of host defense/immune proteins likely by removing glycans and thereby affecting their stability and/or function. Furthermore, these enzymes are known to contribute the formation of biofilms, the bacterial communities inherently resilient to antimicrobials and host immune attack. In this review, we summarize the role of these enzymes in host immune evasion.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Evasão da Resposta Imune , Infecções Pneumocócicas/microbiologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo
4.
Sci Rep ; 12(1): 17795, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272995

RESUMO

The transplacental route of vertical transmission of Hepatitis B Virus (HBV) has been known for over a decade. Here we present evidence which suggest HBV can replicate in placenta. Forty-one HBsAg positive and 10 control pregnant women were enrolled in the study after obtaining informed consent. HBV positives were further divided in the High Viral Load (HVL) Group and Low Viral Load (LVL) Group according to INASL guidelines 2018. The Presence of the HBV DNA and expression of NTCP in the placenta was analyzed by qPCR/RT-qPCR and/or immunohistochemistry (IHC). The presence of cccDNA was assessed using Digital Droplet PCR while the presence of pre-genomic (pg) RNA was assessed through qRT-PCR and sequencing. The presence of HBeAg and HBcAg in the placenta was assessed by IHC. Immunostaining of NTCP, HBeAg and HBcAg on trophoblasts along with the presence of total HBV DNA, cccDNA and pgRNA indicated, that these cells are not only susceptible to HBV infection but may also support viral replication. This is further supported by the finding that trophoblasts of the several HBeAg seronegative samples harbored the HBeAg. Although, we did not find any correlation in NTCP expression and viral markers with viral load indicates placental replication may not aping hepatocytes. The presence of the HBV receptor, NTCP along with the presence of cccDNA, pgRNA, and HBeAg in placenta of HBV infected females without circulating HBeAg suggest that placenta act as a replication host.


Assuntos
Hepatite B Crônica , Hepatite B , Feminino , Humanos , Gravidez , Vírus da Hepatite B/genética , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B , DNA Viral/genética , Gestantes , Antígenos do Núcleo do Vírus da Hepatite B , Receptores do LH , Placenta , Replicação Viral/genética , Biomarcadores , RNA
5.
Pathog Dis ; 80(1)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35953394

RESUMO

Given the emergence and spread of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb), the world faces the urgency of finding new drugs to combat tuberculosis. Understanding the biochemical/physiological processes enabling Mtb to survive the stressful environment within macrophages and acquire tolerance, resistance and persistence against the stresses are the key to developing new approaches to tackle this health problem. As Mtb gains entry into the respiratory tract and is engulfed by macrophages, lowering pH acts as a primary defence of phagosomes within macrophages and also in the centres of caseating granulomas. It becomes essential for the pathogen to maintain pH homeostasis for survival in these conditions. Acid resistance mechanisms are well known and extensively studied in other bacteria such as Escherichia coli, Lactobacillus spp., Brucella spp., Helicobacter pylori and Listeria monocytogenes. However, in the case of Mtb, acid tolerance and resistance mechanisms still need to be explored in detail. This review aims to describe the current understanding of underlying mechanisms involved in countering low pH faced by Mtb as the acid resistance/tolerance mechanisms contribute to the pathogenesis of the disease.


Assuntos
Listeria monocytogenes , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/microbiologia , Fagossomos/microbiologia , Tuberculose/microbiologia
8.
Microorganisms ; 9(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199203

RESUMO

BACKGROUND: The disease severity, ranging from being asymptomatic to having acute illness, and associated inflammatory responses has suggested that alterations in the gut microbiota may play a crucial role in the development of chronic disorders due to COVID-19 infection. This study describes gut microbiota dysbiosis in COVID-19 patients and its implications relating to the disease. DESIGN: A cross sectional prospective study was performed on thirty RT-PCR-confirmed COVID-19 patients admitted to the All India Institute of Medical Sciences, Bhopal, India, between September 10 and 20, 2020. Ten healthy volunteers were recruited as the control group. IFN, TNF, and IL-21 profiling was conducted using plasma samples, and gut bacterial analysis was performed after obtaining the metagenomics data of stool samples. RESULTS: Patients with a variable COVID-19 severity showed distinct gut microflora and peripheral interleukin-21 levels. A low Firmicute/Bacteroidetes ratio, caused by the depletion of the fibre-utilizing bacteria, F. prausnitzii, B. Plebius, and Prevotella, and an increase in Bacteroidetes has associated gut microbiota dysbiosis with COVID-19 disease severity. CONCLUSIONS: The loss of the functional attributes of signature commensals in the gut, due to dysbiosis, is a predisposing factor of COVID-19 pathophysiology.

9.
J Cell Physiol ; 236(12): 8000-8019, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34133758

RESUMO

Viral infections are a major threat to the human population due to the lack of selective therapeutic measures. The morbidity and mortality reported worldwide are very alarming against viral pathogens. The proinflammatory environment is required for viral inhibition by initiating the host immune response. The host immune response fights these pathogens by secreting different cytokines. Interleukin-17 (IL-17) a proinflammatory cytokine mainly produced by T helper type 17 cells, plays a vital role in the regulation of host immune response against various pathogens, including viruses. However, dysregulated production of IL-17 induces chronic inflammation, autoimmune disorders, and may lead to cancer. Recent studies suggest that IL-17 is not only involved in the antiviral immune response but also promotes virus-mediated illnesses. In this review, we discuss the protective and pathogenic role of IL-17 against various viral infections. A detailed understanding of IL-17 during viral infections could contribute to improve therapeutic measures and enable the development of an efficient and safe IL-17 based immunotherapy.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Viroses/imunologia , Animais , Doença Crônica , Citocinas/imunologia , Humanos , Interleucina-17/imunologia
10.
PLoS One ; 16(5): e0251891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34003869

RESUMO

Quick identification and isolation of SARS-CoV-2 infected individuals is central to managing the COVID-19 pandemic. Real time reverse transcriptase PCR (rRT-PCR) is the gold standard for COVID-19 diagnosis. However, this resource-intensive and relatively lengthy technique is not ideally suited for mass testing. While pooled testing offers substantial savings in cost and time, the size of the optimum pool that offers complete concordance with results of individualized testing remains elusive. To determine the optimum pool size, we first evaluated the utility of pool testing using simulated 5-sample pools with varying proportions of positive and negative samples. We observed that 5-sample pool testing resulted in false negativity rate of 5% when the pools contained one positive sample. We then examined the diagnostic performance of 4-sample pools in the operational setting of a diagnostic laboratory using 500 consecutive samples in 125 pools. With background prevalence of 2.4%, this 4-sample pool testing showed 100% concordance with individualized testing and resulted in 66% and 59% reduction in resource and turnaround time, respectively. Since the negative predictive value of a diagnostic test varies inversely with prevalence, we re-tested the 4-sample pooling strategy using a fresh batch of 500 samples in 125 pools when the prevalence rose to 12.7% and recorded 100% concordance and reduction in cost and turnaround time by 36% and 30%, respectively. These observations led us to conclude that 4-sample pool testing offers the optimal blend of resource optimization and diagnostic performance across difference disease prevalence settings.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/genética , Manejo de Espécimes , COVID-19/virologia , Humanos , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação
11.
Iran J Microbiol ; 13(1): 1-7, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33889356

RESUMO

The magnitude and pace of global affliction caused by Coronavirus Disease-19 (COVID-19) is unprecedented in the recent past. From starting in a busy seafood market in the Chinese city of Wuhan, the virus has spread across the globe in less than a year, infecting over 76 million people and causing death of close to 1.7 million individuals worldwide. As no specific antiviral treatment is currently available, the major strategy in containing the pandemic is focused on early diagnosis and prompt isolation of the infected individuals. Several diagnostic modalities have emerged within a relatively short period, which can be broadly classified into molecular and immunological assays. While the former category is centered around real-time PCR, which is currently considered the gold standard of diagnosis, the latter aims to detect viral antigens or antibodies specific to the viral antigens and is yet to be recommended as a stand-alone diagnostic tool. This review aims to provide an update on the different diagnostic modalities that are currently being used in diagnostic laboratories across the world as well as the upcoming methods and challenges associated with each of them. In a rapidly evolving diagnostic landscape with several testing platforms going through various phases of development and/or regulatory clearance, it is prudent that the clinical community familiarizes itself with the nuances of different testing modalities currently being employed for this condition.

12.
Dig Dis ; 39(5): 516-525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33429386

RESUMO

BACKGROUND: Chronicity or seroclearance of hepatitis B virus (HBV) antigens is determined by the host immune responses. Current approaches to treat HBV patients are based on inhibition of replication using different antivirals (nucleoside or nucleotide analogs) as monotherapy, or along with immune modulators as combination therapy is being used worldwide for reducing the viral load. Understanding the role of immune cellular therapies with currently available treatments for persistent viral-mediated responses in HBV patients is unexplored. However, the generation of antibodies against a surface (HBs) and envelop (HBe) antigen of hepatitis B remains an issue for future studies and needs to be explored. SUMMARY: Humoral immunity, specifically T follicular helper (TFh) cells, may serve as a target for therapy for HBsAg seroconversion. In this review, we have been engrossed in the importance and role of the humoral immune responses in CHBV infection and vertical transmission. Key Message: TFh cells have been suggested as the potential target of immunotherapy which lead to seroconversion of HBe and HBs antigens of HBV. HBsAg seroconversion and eradication of covalently closed circular DNA are the main challenges for existing and forthcoming therapies in HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , DNA Viral , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Humanos , Imunidade Humoral
13.
PLoS Pathog ; 17(1): e1009222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465168

RESUMO

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor ß-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Endocardite Bacteriana/patologia , Ácido N-Acetilneuramínico/metabolismo , Streptococcus/metabolismo , Adesinas Bacterianas/genética , Animais , Proteínas de Bactérias/genética , Endocardite Bacteriana/metabolismo , Endocardite Bacteriana/microbiologia , Masculino , Coelhos , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
14.
PLoS One ; 15(9): e0239492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960929

RESUMO

Timely diagnosis of COVID-19 infected individuals and their prompt isolation are essential for controlling the transmission of SARS-CoV-2. Though quantitative reverse transcriptase PCR (qRT-PCR) is the method of choice for COVID-19 diagnostics, the resource-intensive and time-consuming nature of the technique impairs its wide applicability in resource-constrained settings and calls for novel strategies to meet the ever-growing demand for more testing. In this context, a pooled sample testing strategy was evaluated in the setting of emerging disease outbreak in 3 central Indian districts to assess if the cost of the test and turn-around time could be reduced without compromising its diagnostic characteristics and thus lead to early containment of the outbreak. From 545 nasopharyngeal and oropharyngeal samples received from the three emerging districts, a total of 109 pools were created with 5 consecutive samples in each pool. The diagnostic performance of qRT-PCR on pooled sample was compared with that of individual samples in a blinded manner. While pooling reduced the cost of diagnosis by 68% and the laboratory processing time by 66%, 5 of the 109 pools showed discordant results when compared with induvial samples. Four pools which tested negative contained 1 positive sample and 1 pool which was positive did not show any positive sample on deconvolution. Presence of a single infected sample with Ct value of 34 or higher, in a pool of 5, was likely to be missed in pooled sample analysis. At the reported point prevalence of 4.8% in this study, the negative predictive value of qRT-PCR on pooled samples was around 96% suggesting that the adoption of this strategy as an effective screening tool for COVID-19 needs to be carefully evaluated.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Surtos de Doenças/prevenção & controle , Pneumonia Viral/diagnóstico , Betacoronavirus , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/economia , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/economia , Erros de Diagnóstico/estatística & dados numéricos , Humanos , Índia , Programas de Rastreamento/economia , Programas de Rastreamento/métodos , Pandemias , Projetos Piloto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Manejo de Espécimes/métodos , Fatores de Tempo
15.
Indian J Med Res ; 152(1 & 2): 88-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32893844

RESUMO

BACKGROUND & OBJECTIVES: Public health and diagnostic laboratories are facing huge sample loads for COVID-19 diagnosis by real-time reverse transcription-polymerase chain reaction (RT-PCR). High sensitivity of optimized real-time RT-PCR assays makes pooled testing a potentially efficient strategy for resource utilization when positivity rates for particular regions or groups of individuals are low. We report here a comparative analysis of pooled testing for 5- and 10-sample pools by real-time RT-PCR across 10 COVID-19 testing laboratories in India. METHODS: Ten virus research and diagnostic laboratories (VRDLs) testing for COVID-19 by real-time RT-PCR participated in this evaluation. At each laboratory, 100 nasopharyngeal swab samples including 10 positive samples were used to create 5- and 10-sample pools with one positive sample in each pool. RNA extraction and real-time RT-PCR for SARS-CoV-2-specific E gene target were performed for individual positive samples as well as pooled samples. Concordance between individual sample testing and testing in the 5- or 10-sample pools was calculated, and the variation across sites and by sample cycle threshold (Ct) values was analyzed. RESULTS: A total of 110 each of 5- and 10-sample pools were evaluated. Concordance between the 5-sample pool and individual sample testing was 100 per cent in the Ct value ≤30 cycles and 95.5 per cent for Ctvalues ≤33 cycles. Overall concordance between the 5-sample pooled and individual sample testing was 88 per cent while that between 10-sample pool and individual sample testing was 66 per cent. Although the concordance rates for both the 5- and 10-sample pooled testing varied across laboratories, yet for samples with Ct values ≤33 cycles, the concordance was ≥90 per cent across all laboratories for the 5-sample pools. INTERPRETATION & CONCLUSIONS: Results from this multi-site assessment suggest that pooling five samples for SARS-CoV-2 detection by real-time RT-PCR may be an acceptable strategy without much loss of sensitivity even for low viral loads, while with 10-sample pools, there may be considerably higher numbers of false negatives. However, testing laboratories should perform validations with the specific RNA extraction and RT-PCR kits in use at their centres before initiating pooled testing.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Testes Diagnósticos de Rotina/métodos , Feminino , Humanos , Índia/epidemiologia , Masculino , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Testes Sorológicos , Manejo de Espécimes , Carga Viral/genética
16.
Microbiol Immunol ; 64(10): 694-702, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32816349

RESUMO

Macrophages represent the first line of defense against invading Mycobacterium tuberculosis (Mtb). In order to enhance intracellular survival, Mtb targets various components of the host signaling pathways to limit macrophage functions. The outcome of Mtb infection depends on various factors derived from both host and pathogen. A detailed understanding of such factors operating during interaction of the pathogen with the host is a prerequisite for designing new approaches for combating mycobacterial infections. This work analyzed the role of host phospholipase C-γ1 (PLC-γ1) in regulating mycobacterial uptake and killing by J774A.1 murine macrophages. Small interfering RNA mediated knockdown of PLC-γ1 increased internalization and reduced the intracellular survival of both Mtb and Mycobacterium smegmatis (MS) by macrophages. Down-regulation of the host PLC-γ1 was observed during the course of mycobacterial infection within these macrophages. Finally, Mtb infection also suppressed the expression of pro-inflammatory cytokine tumor necrosis factor-α and chemokine (C-C motif) ligand 5 (RANTES) which was restored by knocking down PLC-γ1 in J774A.1 cells. These observations suggest a role of host PLC-γ1 in the uptake and killing of mycobacteria by murine macrophages.


Assuntos
Quimiocina CCL5/metabolismo , Macrófagos/imunologia , Mycobacterium smegmatis/imunologia , Fagocitose/imunologia , Fosfolipase C gama/genética , Animais , Células Cultivadas , Camundongos , Mycobacterium tuberculosis/imunologia , Fosfolipase C gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-31297339

RESUMO

The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well-known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.


Assuntos
Neuraminidase/sangue , Neuraminidase/metabolismo , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Plaquetas/metabolismo , Proteínas do Sistema Complemento/efeitos dos fármacos , Eritrócitos , Células HEK293 , Hemólise , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Inflamação , Neuraminidase/genética , Neuraminidase/farmacologia , Infecções Pneumocócicas/microbiologia , Deleção de Sequência , Ácidos Siálicos
19.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308084

RESUMO

Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.


Assuntos
Proteínas de Bactérias/ultraestrutura , Biofilmes/crescimento & desenvolvimento , Saliva/metabolismo , Ácidos Siálicos/metabolismo , Streptococcus oralis/genética , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Expressão Gênica , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Saliva/química , Ácidos Siálicos/química , Streptococcus oralis/química , Streptococcus oralis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...